Optimal Mutation rates and Recombination:

The effect of population size and gene length

Alice Eldridge

October 2, 2002

Abstract

Optimal parameters setting have been the subject of
much research. Early work suffered from methodologi-
cal and theoretical weaknesses that limited the predic-
tive value of the findings. A recent paper by Ochoa et al
[20] reported the influence of recombination on optimal
mutation rates and proposed a theoretical link between
optimal mutation rates and error thresholds. Findings
are presented from a preliminary investigation into the
effects of population size and chromosome length on the
influence of recombination. Results suggest that the ef-
fects are independent of population size, but may be
affected by changes in chromosome length. The possi-
bility that the effect persists under different selection

schemes is also considered.

1 GA Parameter Settings

Problems with early research The per-
formance of a GA is crucially dependent on
the choice of the main parameters: mutation
rate, crossover rate and population size. This
has long been acknowledged, and the search for
optimal parameter settings has been the sub-
ject of much research.

The ’optimal’ settings for parameters is how-
ever in turn dependent on the other opera-
tors and characteristics of the problem. This
was not been so well recognised in previous re-
search. For example, previous theoretical re-
search on optimal mutation rates has exam-
ined mutation operator in isolation, ignoring

recombination in order to simplify the analysis.
[15],[17]. Although there have been empirical
studies that recognise and examine the interac-
tions between settings [22], many studies have
tended to focus on finding a ’general’ set of
optimal settings experimentally, [9],[14] using
a fixed test suite. The results of such studies
typically have weak predictive value regarding
relative performance on new problems, as the
results may not be generaliseable beyond the
particular test-suite used.

Research dedicated to finding a ’general’ set
of parameter settings is indicative of the early
conceptualisation of the GA as a robust general
purpose optimiser that will exhibit the same
behaviour over a range of problems . It is now
acknowledged that lunch must be paid for [24] :
specific problem types require specific settings
for satisfactory performance [4].

Currently a variety of approaches are ad-
vocated for tuning parameters. One option
is to employ theoretical analysis to param-
eters by ”analogy”, but the practical value
of current theoretical results is unclear !.
There has been extensive research into the use
of dynamic parameter control - deterministic
(time-dependent deterministic rule), adaptive
(through feedback) or self-adaptive (where the
parameters themselves are encoded and sub-

'..Davis advised the best thing a practitioner can
do is ’stay away from theoretical results’. Workshop on
evolutionary Algorithms, University of minesotat, Oct
1996

ject to evolution) [2]. In particular the use of
adaptive mutation rates is advocated.

Although there is a lack of consensus re-
garding the superiority of using complex self-
adaptive control procedures in general, it
seems that for mutation rates, the optimal
strategy (that which solves the optimisation or
search problem with most efficiency), is a gen-
erally acknowledged heuristic of starting with
a relatively high mutation rate and decreasing
it over the course of a run. This is applicable
to a GA without recombination .

1.1 Error Thresholds, Optimal Mu-
tation Rates and Recombination

Rather than developing GA theory or individ-
ually evolving parameter control , a more in-
tuitively attractive approach has been to re-
fer back to the original inspiration for EAs,
namely biological theory. In particular several
authors has proposed a relationship between
optimal mutation rates and error threshold - a
notion from molecular evolution [15],[16].

The error threshold is the critical mutation
rate beyond which structures obtained by the
evolutionary process are destroyed more fre-
quently than selection can produce them. Op-
timal solutions will only be stable in the pop-
ulation for mutation rates below this critical
The correspondence between optimal
mutation rates and the error threshold is seen
as both are intuitively related to the idea of a
balance between exploitation and exploration
in genetic search. The relationship is sup-
ported by biological evidence [11].

value.

Recombination also contributes to this bal-
ance, as in the early stages of an algorithm
run, when the genetic variance is high, it acts
as a diverging operation, much like mutation.
We would intuitively think that the effects of
two divergent operators would be additive, and
indeed, the effect of recombination in lower-
ing the error threshold has been demonstrated

for infinite populations in mathematical mod-
els [8]. Ochoa, Harvey and Buxton (1999) de-
veloped an empirical means of determining the
error threshold in a GA and showed that for fi-
nite populations, this threshold, as well as opti-
mal mutation rate was higher for GAs without
recombination [21].

These results are important in that they re-
late empirical findings regarding the optimal
strategy for mutation rates [12],[17],[1] to an
aspect of molecular evolution theory. This of-
fers the potential for furthering our theoreti-
cal understanding of EAs. It may also prove
to be of practical importance as the heuris-
tics advanced for determining error thresholds
could be useful guidelines for establishing op-
timal mutation rates. 2

The effects of recombination on optimal mu-
tation rates in a GA were replicated in a recent
GA paper by Ochoa et al (1999). For a variety
of problems, it was demonstrated that the op-
timal mutation rate is dependent on whether
or not recombination is used. With recombina-
tion (GA), the best performance is observed for
a low mutation rate throughout the run. With-
out recombination (GA-m), however, a higher
mutation rate is more effective at the start of
the run, whilst as the population converges
upon the optimal solution towards the end of
the run, a lower mutation rate is favoured.

1.2 Methods

The results have arguably more predictive
power than those of previous empirical studies,
as they were obtained using random problem
generators, removing the possibility of hand-
tuning. This new empirical methodology pro-

2This potential is slightly limited in that the error
threshold can only be ascertained once the global peak
is known. The application in real world problems will
therefore be limited to cases where a region of landscape
or member of one class of landscapes, analogous to the
problem is already familiar.

posed by De Jong, Potter and Spears (1997),
[10] affords a more valid means of testing EAs.
They have developed a series of 'problem gen-
erators’, abstract models that produce ran-
domly generated models. By recording the av-
erage behaviour of GA over a number of such
random problems, the predictive power of the
results for the particular class of problem in-
creases with the number of trials.

The NK landscape generator One of the
problem generators used was the NK Land-
scape generator [10]. This is based on Kauff-
man’s tunable NK model of fitness landscapes
[16]. Points on the landscape are bit strings
of length N and K describes the degree of
epistatic interactions or linkages between each
gene. The fitness of each locus is determined
by taking the bit value at that locus, together
with the value of the K interacting loci as an
index to a look up table of size N2*+1 contain-
ing randomly generated uniformly distributed
values over [0.0, 1.0]. The set of K interacting
bits for each locus can be assigned randomly or
selected adjacently. The fitness of each chro-
mosome is simply the average of the sum of the
fitness values at each locus as follows.

1 N
f(chromosome)_ﬁ ; f(locus;).

One draw back with this problem generator,
is that the amount of storage used (N2F+1) for
teh fitness table makes it prohibitive to explore
large values of K for long chromosomes.

2 Population size and
Chromosome length

Ochoa et la (1999) demonstrated the effect of
recombination on optimal mutation rates for
both NK and multi-modal problems. However,
only one size of population (100) and chromo-
some length (100) were used. If these results

are to stand as theoretical or practical guides,
it must be shown that they are independent of
the parameter values used.
is related to error threshold, then we would
expect recombination to have the same effect
irrespective of population size or chromosome
length (N), although the value of the optimal
rate may change.

The current study aims to replicate the re-
sults of recombination on optimal mutation
rates reported in Ochoa et al (1999) for NK
problems, and explore the effects of reducing
the population size and chromosome length.
Population size
This is a relatively high population size com-
pared with many previous empirical findings
: Grefenstette’s meta-GA produced a popula-
tion size of 30-80 [14], De Jong experimented
with sizes from 50 to 100 [9] and Schaeffer et
al recommended 20-30 [22]. In the original de-
velopment of the NK problem generators [10]
GAs with and without crossover and mutation
operators were compared. Population sizes of
50 - 200 were explored and reported to have
no effect. There is no empirical or theoretical
evidence to suggest that the effects reported in
the Ochoa paper will not persist for a smaller
population size. However conventional wis-
dom dictates that the population may converge
quicker, perhaps prematurely, resulting in a re-
duction in the optimal solution achieved.[14].
Chromosome length
The chromosome length of 100 used in the orig-
inal study is also high compared to that used
in comparable studies (De jong et al, 1997 use
N = 48). Here the effects of reducing chromo-
some length are explored. Ochoa proposes that
the effects will persist independent of chromo-
some length, although the actual optimum mu-
tation rates may change.
of N, we may expect a higher mutation rate
[3]. Chromosome length effects are reported to
be independent of population size. Each pa-
rameter will therefore be varied independently,

If mutation rate

For smaller values

maintaining the other parameter at the values
used in Ochoa et al, allowing a valid compari-
son with the original results.

2.1 Initial Replication

In order to test whether the effects reported
in by Ochoa could be observed for different
population sizes and chromosome lengths, it
was necessary to first replicate the results us-
ing the original parameters. This turned out
to be somewhat of an investigation in itself!.
The actual parameters were clearly reported
as follows:

chromosome length 100

population size 100

crossover rate 0.6

Mutation rates 0.001, 0.005, 0.01
generations 1000

No of problems 20

The description of operators and selection
procedure were ambiguous. The operators
were reported as ’two-point crossover ' and
standard bit mutation’, the selection proce-
dure simply as "fitness proportionate selection’.
Cross-over
It was not clear whether the two point
crossover used ensured that recombination oc-
curred at exactly two loci, or allowed for the
possibility of one point or none (if for example
both loci were at end-points of the chromo-
some). I adopted a 'middle-ground’ and imple-
mented a two-point crossover procedure that
ensured that cross-over did take place, but al-
lowed for the possibility of one point. (ie, en-
sured that at least one of the crossover points
was not an end point).

Mutation rate

It was not explcicitly stated whether the mu-
tation rates reported refered to the chromo-
some or locus. However, given a chromosome
length of 100, the values of reported mutation
rates (0.001 - 0.01) suggest that these are the
probabilities of mutation at each locus. The

mutation operator in the current GA was im-
plemented under this assumption.

Selection procedure

The selection procedure was reported simply
as ’fitness proportionate selection’. This is
slightly ambiguous. The term could be seen
to refer to 'roulette wheel’[5] style or Stochas-
tic Universal Sampling [5], although in some
literature ’fitness proportionate’ refers to the
fact that absolute fitness values are used, dis-
tinguishing these techniques from rank-based
selection procedures. This would therefore in-
clude truncation selection [18], local selection
[13] and tournament selection [7].

2.1.1 Programme implementation

and testing

GA Initially, a generational GA using
‘roulette-wheel’ selection was written with the
operators specified above. Each operator was
tested by printing out the population before
and after application of operators, and ensur-
ing that mutation and recombination occurred
at the expected loci. The GA was then tested
on a trivial 'max ones’ problem and performed
as expected.

Problem generator The NK generator
was implemented by creating a lookup table
(hashtable)with N columns and 25*! rows rep-
resenting each of possible patterns of interact-
ing genes. The table is initialised for each new
problem with uniformly distributed numbers
in the range [0.0 - 1.0].

The fitness of each chromosome is found by
first determining an integer representation of
the binary ’pattern’ of the K interacting loci at
each locus and then using this 'pattern’ num-
ber and locus position to index the look-up
table. The sets of interacting bits were de-
termined by according to the 'neighbourhood

model’, by selecting adjacent loci. 3. For ex-

ample for the bit string 10111, when K = 2,
the ’pattern’ associated with the gene at the
second locus is 101 and is stored as 5. When
the chromosome is evaluated, the fitness value
of the second locus is the value that has been
randomly assigned to the sixth row of the sec-
ond column. This is repeated for each locus,
and the fitness value of the entire chromosome
computed by summing the fitness contribution
of each locus and dividing by N. An example
output is given in appendix 1.

2.1.2 Replication results

Roulette Wheel
style selection, two point crossover and stan-
dard bit mutation with the above parameters
did not produce the effects reported in Ochoa
et al. With recombination (fig 1), the high-
est mutation rate was optimal throughout the
run and without recombination (fig 2) the ef-
fect was exaggerated. Re-writing the selec-
tion procedure using stochastic universal sam-
pling produced a similar effect. In an attempt
to ascertain if the GA itself was at fault, a
previously validated GA was run on the NK
problem. Roulette wheel selection with this
GA produced similar results, suggesting that

A GA using roulette wheel

roulette-wheel selction was not used.

replacing
selection

Selection By
tournament

Tournament
roulette wheel with
(tournament size 4) however, the effect of
recombination on optimal mutation rates
described by Ochoa for K=0 is observed (figs
3 & 4). Standard deviations are not shown for
the sake of clarity , but were all below 0.01
and are given in appendix 1.

3due to restraints, only even K values can be used!

GA N=100 npop=100 K=0.(Roulette-Wheel)

0.68 T
0.001 ——
0.005 ——x—
0.66 - 0.01 —xr
0.05 &
0.64 -
o 0.62
%]
[}
S
£ 06 |-
g G G TR
e P
400 600 800 1000
generation

Figure 1: Average best-so-far curves

GA Using Roulette-Wheel selection

GA-m N=100 npop=100 K=0.(Roulette-Wheel)

0.68 T
0.001 ——
0.005 —--x—-
0.66 - 0.01 — x|
0.05 &
0.64 -
o 062
%]
(o)
S
£ 06 |-
0.58 - e B G B B
=]
B R N VI % - = mmmmm f
0.56 | ":i* """ e
0.54 : : : :
0 200 400 600 800 1000
generation

Figure 2: Average best-so-far curves
GA-m Using Roulette-Wheel selection

GA N=100 npop=100 K=0

0.68
0.66 .
0.64
=] a =
o 062 - B
1%}
()
£
£ 06 |-
058 [/i
0.001 —+—
0.56 -/ 0.005 —-x—
0.01 -
I 0.05 -8
0.54 L L L i
0 100 200 300 400 500
generation

Figure 3: Average best-so-far curves
GA using Tournament selection

GA-m N=100 npop=100 K=0
0.68

0.66

0.64

0.62

fitness

0.6

0.001 ——
0.005 -~ -
0.01 -—-x--
005 =8

400

0.56 i

0.54

200 300
generation

0 100 500
Figure 4: Average best-so-far curves
GA-m using Tournament selection

Although the effect is small, it can be seen that
with recombination (GA), the lowest mutation
rate used produces the best results over the en-
tire run. Without recombination (GA-m) the
higher mutation rates are initially more effec-
tive, but once converged, the lower rate pro-
duces a higher fitness. It is of note that the GA
converges extremely rapidly (1000 generations
were run, but only the first 500 are displayed).
It is recognised that there exists a fundamen-
tal difference between the Ochoa algorithm and
the current implementation. Demonstration of
the pattern for NK problems with zero epista-
sis inspite of this discrepancy can be seen to
strengthen the generality of the effects.

3 Design

An investigation into the effects of population
size and chromosome length was carried out us-
ing a generational GA employing tournament
selection with a tournament size of 4. This
tournament size affords a good balance be-
tween loss of divergence, selection variance and
selection intensity. T'wo point crossover and
point mutation were implemented as above.

Experimental conditions Due to the stor-
age requirements of the look up tables (and
the limitation of of my home computer!), it
was not possible to explore large values of K
for N = 100. Therefore for the population size
conditions, K = 0 was employed. Whilst er-
ror thresholds are not applicable to such triv-
ial landscapes, the optimum mutation rate ef-
fects are reported for this single peak land-
scape. Larger values of K were explored for
smaller chromosome lengths.
The values of population size and chromo-
some length examined are shown below. The
separate effects of altering these parameters
were explored by varying them independently,
keeping all other parameters constant. Each
was run on both GA and GA-m. Possible in-
teraction was not explored any chromosome
length effects are reported to be independent
of population size [3],[18].
The performance metric monitored was
”best-so-far” curves. Standard deviations were
recorded but due to a technical problem are not
available. All were of the same order as those
for the control condition given in appendices 2
and 3.
experimental variables
population sizes
chromosome length(N)
mutation rates

constant parameter values
Recombination probability 0.6

1000
20

80 60 40 20
80 60 40 20
0.001 0.005 0.01 0.05

generations
no problems

4 Experimental results

4.1 Population size

Experiments were run for population sizes of
80, 60, 40 and 20 for NK problems with K = 0.
Figs 5 & 6 show the average best-so-far curves
for GA and GA-m with a population size of
60. Figures 7 & 8 illustrate the results for both

GA N=100 npop=60 K=0

0.68
0.66
0.64
s a
o 0.62
%]
[0}
=
£ 06
0.58
0.001 ——
0.56 | 0.005 -—-x—
0.01 —x—
0.05 =
0.54 w ‘ ‘ ;
0 100 200 300 400 500

generation

Figure 5: Average best-so-far curves.
GA population size 60

GAs with a population size of 20. These results
are representative of all values tested, full re-
sults are presented in appendix 4

It can be seen that although small, the main
effect did not differ significantly across condi-
tions, and is comparable to that on the control
condition. Although the difference is small,
when recombination is used, the lowest mu-
tation rate explored produces the best results
over the whole algorithm (Figures 5 and 7)
without recombination, search is initially en-
hanced by the higher mutation rates, but the
lower rate achieves a higher fitness ultimately.

4.2 Chromosome length

GA with recombination Figures 9, 10, 11 and
12 illustrate the effects of decreasing the chro-
mosome length on the optimal mutation rate
for a GA with recombination. As expected,
as N is decreased, the optimal mutation rates
increase. The initial mutation rates employed
were conservatively low, the highest rate
employed (0.05) proving to be the optimal
for N = 20. An additional investigation was
carried out with higher mutation rates to
establish if 0.05 exceeded the performance of

GA-m N=100 npop=60 K=0

fitness

0.001 ——
0.005 -~ -
0.01 --x--
L L L OFOS °
0 100 200 300 400 500

generation

Figure 6: Average best-so-far curves.
GA-m population size 60

GA N=100 npop=20 K=0

fitness

generation

Figure 7: Average best-so-far curves
GA for population size 20

GA-m N=100 npop=20 K=0

0.001 ——
0.005 -~ -
0.01 -—-x--
L L OFOS °
200 300 400 500

0.68

fitness

0.001 ——
0.005 -~ -
0.01 -—-x--
L L L OFOS °
0 100 200 300 400 500

generation

Figure 8: Average best-so-far curves
GA-m for population size 20

GA N=80 npop=100 K=0

0.68

0.64 - J @ a a 4

fitness

0.001 ——
056 & 0.005 -~ -
0.01 -—-x--
0.05 s
0.54 : : : i
0 100 200 300 400 500

generation

Figure 9: Average best-so-far curves

GA, N = 80

GA N=60 npop=100 K=0

0.68 ¥ ¥ % x
0.66 - i
/ o e o
0.64 |]
173 f
g o062} ,
0.6 A
0.001 —+—
0.58 1y 0.005 ———x—
; 0.01 -
0.05 -8
0.56 : : : ;
0 100 200 300 400 500
generation

Figure 10: Average best-so-far curves

GA, N = 60

higher rates, as in the Ochoa study. As fig 13
shows it is possible to replicate the qualitative
results reported in the Ochoa paper for a
GA with recombination, in that the lowest
mutation rate used achieves the highest fitness.

Increasing epistasis For lower values of N, it
was possible to examine problems with higher
epistasis. Figure 14 shows the average best-so-
far curve for a chromosome length of 60, level
of epistasis 4. Figures 15 illustrates the effects

GA N=40 npop=100 K=0

0.68

fitness

0.001 —+—
0.005 -]
0.01 ~x
0,05 o
0.56 : : : i
0 100 200 300 400 500

generation

Figure 11: Average best-so-far curves

GA, N = 40

GA N=20 npop=100 K=0

0.68

fitness

0.001 ——
0.005 -
0.01 -—-x--
0.05 s
06 ‘ ‘ ‘ ;
0 100 200 300 400 500

generation

Figure 12: Average best-so-far curves

GA, N = 20

GA N=20 npop=100 K=0 (higher mutation rates)

0.68

mk
o%

fitness

0.05 ——
0.1 -
0.15
0.2 -
06 ‘ ‘ ‘ ‘
0 100 200 300 400 500

generation

Figure 13: Average best-so-far curves
GA, N = 20 using higher mutation rates

GA N=60 npop=100 K=4

0.78
0.76
0.74
0.72

0.7
0.68

fitness

0.66
0.64
0.62

0.6 |

0.58 - - -
200 300

generation

0.05
400

500

Figure 14: Average best-so-far curves

GA,N =60, K = 4

GA N=20 npop=100 K=10
0.78 ‘

0.74 -

0.72

fitness

0.7

0.001 ——
0.005 -~ -
0.01 -x--

0.66 ¥

GA-m N=80 npop=100 K=0
0.68 T

fitness

0.05 -8

0.64 .
0 100

200

300

400

500

generation

Figure 15: Average best-so-far curves

GA, N =120,K =10

of medium epistasis (K = 10) on GA, N = 20.
These results suggest that increasing the level
of epistasis increases the relative effectiveness
of the optimal mutation rate, as in Ochoa et
al.

GA-m without recombination However, the re-
sults for a GA without recombination (figs 16,
17,18 and 19) suggest that this is not the same
effect that Ochoa reported. Although reduc-
ing N seems to have an effect mutation rate in
increasing the effectiveness of the highest rate

0.001 ——
0.005 > -
0.01 —x-
0.05 &
0.54 : : : i
0 100 200 300 400 500
generation
Figure 16: Average best-so-far curves
GA-m, N =80
GA-m N=60 npop=100 K=0
0.68
. s s
@
(o) 4
£
0.001 ——
0.005 >]
0.01 —x-
L L OFOS °
200 300 400 500
generation

Figure 17: Average best-so-far curves

GA-m, N = 60

used (0.05), the optimal mutation rate does not
vary across different values of N. Lower muta-
tion rates are outperformed by higher rates in
the early stages for longer chromosome lengths,
this effect decreases as N is decreased. For
lower values of N, the lowest mutation rate
produces the best performance over the whole
run. It should be noted that as N decreases,
the maximum fitness is achieved even earlier,
and this may be obscuring the effect.

GA-m N=40 npop=100 K=0

0.68 : :
R
0.66 5 K
0.64
[}
3
2 o062
06/
0.001 ——
0.58 ¢ 0.005 ———x—
0.01 %
0,05 o
0.56 ;

200 300
generation

100 400 500

Figure 18: Average best-so-far curves

GA-m, N = 40

GA-m N=20 npop=100 K=0

0.7
0.68
0.66
[}
%]
[0}
s
T 064 L
0.62 0.001 —+—
0.005 -~
0.01 ~x-
0.05 -8
0.6 ;

200 300
generation

500

Figure 19: Average best-so-far curves

GA-m, N =20

5 Discussion

The results of this preliminary investigation
suggest that the effects of recombination on op-
timal mutation rates are independent of pop-
ulation size as expected. It is perhaps surpris-
ing that reducing the population size did not
affect the value of the fitness achieved as con-
ventional wisdom dictates that a larger popula-
tion will achieve a better solution. The reduced
search space resulting from a diminished pop-
ulation size can cause convergence to a subop-
timal solution, however this effect is dependent

on problem characteristics. It may be that the
uniform distribution of fitness values in this
single peak landscape means that achieving the
optimal solution is not dependent upon the size
of search space. It would be interesting to ex-
amine the results of decreasing population size
on problems with higher epistasis.

The results obtained from decreasing the
chromosome length are interesting, although
it is difficult to ascertain the exact nature of
the effects due to the rapid convergence of the
GA and the minimal differences in fitness val-
ues for the mutation rates used. The GA-m
average best-so-far plots suggest that the mu-
tation rate of 0.001 is optimal for all values
of N. For longer chromosome (N = 80 and N
= 60) this lower rate is initially outperformed
by higher rates as for N = 100 . Due to the
rapid convergence for lower values of N it is not
possible to establish if this persists for shorter
chromosome.

Irrespective of this uncertainty, in contrast
to teh GA without recombination, the opti-
mal mutation rates for a GA with recombina-
tion increased for successively shorter chromo-
some as is typical. This discrepancy in opti-
mal mutation rates with and without recom-
bination suggests that recombination does in-
fluences the optimal mutation rate for shorter
chromosome, but the effect is different to that
for larger values of N.

In explaining the effect for longer chromo-
somes, Ochoa proposed a dual role for recom-
bination. It was proposed that the nature
of the operator changed as a function of ge-
netic variance. Therefore at the start of a run,
when the genetic variance is high, recombina-
tion has a divergent influence, enhancing the
search power of the algorithm. As the ge-
netic homogeneity increases over the run, re-
combination functions to focus the population
around the optimum, acting as an error repair
mechanism.

The current results do not provide enough

10

information to speculate over the exact effects
of reducing the chromosome length on this dual
role for recombination. It is possible that the
differences are a results of the selection method
used, or reveal an anomaly in the GA or prob-
lem generator. If tournament selection was not
used in the original study, the results provide
support for the generality of the the effect of
recombination on optimal mutation rates over
a range of population sizes as well as selection
methods.

Although the NK problem generator pro-
vides are more representative than previous
test suites used (eg [9]) it seems necessary to
test for the effects of recombination on land-
scapes with neutrality such as the NK-p land-
scapes [6].

6 Postcript

Although framed as a scientific study, the prin-
ciple purpose of this piece of work was to de-
velop the skills and conceptual understanding
required to perform it! In that respect, it has
proved an invaluable experiment. Not only in
an initiation in programming but the use of all
the peripheral software and technique neces-
sary to analyse and realise the results, as well
as an introduction to the workings of evolution-
ary algorithms. That which I have learnt from
my mistakes outweighs any accomplishments.

11

References

[1] Back, T. (1991). Self adaptation in genetic
algorithms. In Varela, F.J. and Bougine,
P., (eds) ECAL 1. Toward a practice of
Autonomous systems, p 263-271, Paris,
France, MIT press, Cambridge, MA

Back, T. (1992) The interaction of muta-
tion rate, selection and adaptation within
a genetic algorithm. Manner, B. and Man-
derik, R., (eds) Parallel Problem Solving
from Nature, 2: Proceedings from the sec-
ond Conference on Parallel Problem Solv-
ing from nature, Brussesl, p 15-25. North
Holland.

Back, T. (1993). Optimal mutation rates
in genetic search. In Forrest, S., (ed)ICGA
5, p 2-8, san Mateo, CA, USA. Morgan
Kaufmann

Back, T., Fogel, D. and Michalewicz,
Z. (eds)(1997) Handbook of Evolutionary
Computation Institute of Physics Publish-

ing 1td, Bristol, Oxford University Press,
New York.

Baker, J.E. (1987) Reducing Bias and in-
efficiency in the selection algorithm in
ICGA2 ppl4-21

Barnett, L.,(1997) Tangled webs:
lutionary dynamics on fitness landscapes
with neutrality. Masrter’s thesis, School

Evo-

of Cognitive an Computing Sciences, Uni-
versity of Sussex.

Blickle, T. & Thiele, L. (1995) : A com-
parison of selection schemes used in Ge-
netic AlgorithmsTIK report Nr 11.

Boerlijst, M.C., Bonhoeffer, S., and
Nowak, M.A. (1996). Viral quasi-species
and recombination. Proc. R.Soc. London.
B, 263:1577-1584.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

De Jong, K. A. (1975) Analysis of be-
haviour of a class of Genetic Adaptive
Systems PhD Thesis, University of Michi-
gan, Ann Arbor. ML

De Jong , K.A., Potter, M.A., and Spears,
W.M.(1997) Using problem generators to
explore the efects of epistasis. In Back,
T.ICAL 7p 338-345, San Fransisco. Mor-
gan Kaufmann.

Figen, M. and Schuster, P. (1979) The Hy-
percycle: A principle of Self-organisation.
Springer Verlag.

Fogarty, T.C. (1989). Varying the prob-
ability of mutation in teh genetic algo-
rithm. In Schaffer, J. D., (ed) ICAL 3 p
104-109, George Mason University. Mor-
gan Kaufmann.

Goldberg, D.E. & Deb, K. (1991) A com-
paritive analysis of selection schemes used
in Genetic AlgorithmsFGAI p 69-93.

Greffenstette, J.J. (1986). Optimisation of
control parameters for genetic algorithms.
IEE Trans SMC, 16(1): 122-128.

Hesser, J. and Manner, R. (1991) Towards
an optimal probability for genetic algo-
riths. In Schwefel, H.P. and Manner, R.
(eds). parallel Problem Solving from Na-
ture Springer Verlag, Lecture Notes in
Computer Science Vol. 496.

Kaufmann, S.A. (993). The Origins of Or-
der: Self-Organisation and Selection in
FPuvolution. Oxford University Press.

Muhlenbein, H. (1992). How genetic all-
gorithms relly work: Mutation and hill-
climbing. In Manner, B. and Manderik,
R., (eds) Parallel Problem Solving from
Nature, 2: proceedings form the second
Conference on Parallel Problem Solving

12

[18]

[19]

[20]

[21]

[22]

[23]

[24]

from nature, Brussesl,p 15-25. North Hol-
land.

Muhlenbeim, H. and Schlierkamp,D.
(1993) Analysis of Selection, mutation
and recombination in genetic algorithms.
tech report. 93-24.

Ochoa, G., Harvey, 1.(1998). Recombina-
tion and error thresholds in finite popu-
lations. In Banzhaf, W. and Reeves, C.,
(eds), FOGA-5 San Fransisco, CA. Mor-

gan Kaufmann.

Ochoa, G., Harvey, 1. and Buxton, H.
(1999) On Recombination and Optimal
Mutation Rates. In GECCO 1999: pro-
ceedings of the Genetics and Fvolutionary
Computation Conference. Banzhat, W.,
Daida, J., & Eiben, A.E. (eds) Morgan

Kaufman

Ochoa, G., Harvey, I. and Buxton, H.
Recombination and Error Thresholds in
Finite populations. In FOGA-5 Morgan
Kaufmann.

Schaffer, J., Caruana, R., Eshelman, L.,
and Das, R. (1989). A study of control pa-
rameters affecting online performance of
genetic algorithms for function optimisa-
tion. In Schaffer, J.D., (ed) ICGA 3, San
Mateo CA. Morgan Kaufmann.

Spears, W.M. (1998) The Role os Muta-
tion and Recombination in evolutionary
Algorithms Phd. Thesis, George Morgan
Iniversit, Fairfax, Virginia

Wolpert, D.H., and Macready, W.G.,
(1997) No Free Lunch Theorum for opti-
misation. In IFFFE Transactionon FEvolu-
tionary Computation, 1(1).

Appendix 1
Example output of Hashtable for N = 4 K = 2

Hashtable: N = 4 K = 2

0 0.510946 0.044487 0.059357 0.959725
1 0.257903 0.411568 0.435447 0.491216
2 0.804151 0.940436 0.273011 0.690617
3 0.966860 0.928621 0.779307 0.993503
4 0.864460 0.842180 0.875743 0.003698
5 0.320475 0.227893 0.127966 0.635086
6 0.820596 0.369551 0.038560 0.827571
7 0.533508 0.415474 0.703155 0.212820
population:

0101

0110

0111

1000

1110

1100

Fitness:

fitness of O 0.519874

fitness of 1 0.307196

fitness of 2 0.694956

fitness of 3 0.549226

fitness of 4 0.513995

fitness of &5 0.675843

13

Appendix 2

Mean Best-so-far fitness and standard deviations N = 100 K = 0 population size 100 GA with

Recombination

14

generation
mutation rate 0.001
0

100

200

300

400

500

600

700

800

900

1000
mutation rate 0.05
0

100

200

300

400

500

600

700

800

900

1000
mutation rate 0.01
0

100

200

300

400

500

600

700

800

900

1000
mutation rate 0.05
0

100

200

300

400

500

600

700

800

900

1000

average bsof

0.540561
0.657155
0.658338
0.658510
0.658600
0.658635
0.658658
0.658660
0.658675
0.658679
0.658679

0.547314
0.672429
0.673452
0.673452
0.673452
0.673452
0.673452
0.673452
0.673452
0.673452
0.673452

0.540561
0.657155
0.658338
0.658510
0.658600
0.658635
0.658658
0.658660
0.658675
0.658679
0.658679

0.549678
0.621803
0.626542
0.627174
0.627780
0.628723
0.629031
0.629334
0.629347
0.629347
0.629784

sd

0.010468
0.008879
0.008700
0.009110
0.009110
0.009075
0.009075
0.009075
0.009075
0.009075
0.009075

0.001216
0.009103
0.008894
0.008894
0.008894
0.008894
0.008894
0.008894
0.008894
0.008894
0.008894

0.010468
0.008879
0.008700
0.009110
0.009110
0.009075
0.009075
0.009075
0.009075
0.009075
0.009075

0.035644
0.037528
0.038327
0.032561
0.031133
0.040620
0.040620
0.040620
0.040620
0.040620
0.040620

Appendix 3

Mean Best-so-far fitness and standard deviations N = 100 K = 0 population size 100 GA-m

without Recombination

15

generation
mutation rate 0.001
0

100

200

300

400

500

600

700

800

900

1000
mutation rate 0.005
0

100

200

300

400

500

600

700

800

900

1000
mutation rate 0.01
0

100

200

300

400

500

600

700

800

900

1000
mutation rate 0.05
0

100

200

300

400

500

600

700

800

900

1000

average bsof

0.528859
0.608875
0.634452
0.635423
0.635423
0.635423
0.635423
0.635423
0.635423
0.635423
0.635423

0.553865
0.670748
0.680865
0.680865
0.680865
0.680865
0.680865
0.680865
0.680865
0.680865
0.680865

0.551007
0.639815
0.647939
0.648263
0.650447
0.650447
0.650447
0.650447
0.650447
0.650447
0.650447

0.545801
0.610863
0.615785
0.618977
0.618977
0.620127
0.620127
0.620127
0.620127
0.620127
0.620127

sd

0.004801
0.001598
0.000353
0.001246
0.001246
0.001246
0.001246
0.001246
0.001246
0.001246
0.001246

0.001310
0.005674
0.003829
0.003829
0.003829
0.003829
0.003829
0.003829
0.003829
0.003829
0.003829

0.001806
0.002819
0.000547
0.002864
0.002864
0.002864
0.002864
0.002864
0.002864
0.002864
0.002864

0.000702
0.001392
0.002317
0.002197
0.002197
0.002713
0.002713
0.002713
0.002713
0.002713
0.002713

Appendix 4
Average beset-so-far plots for all population sizes tested

GA N=100 npop=100 K=0

0.68
0.66
0.64 + 1 GA-m N=100 npop=100 K=0
o 8 o
o 0.62 7
7] s -
(o)
£ 1
= 06 i]
0.58 - 1
0.001 —— ”]
056 (/7 0.005 - - o o o
0.01 e &
f 005 = =]
0.54 : : - '
0 100 200 300 400 500 |
generation 0.001
) / 0.005 —x— -
Figure 20: Average best-so-far curves for GA oo
. . 0.54 L L L L
population size 100 0 100 200 300 400 500
generation

Figure 21: Average best-so-far curves for GA-
m for population size 100

GA N=100 npop=80 K=0

B =3 3

@

() 4

£
0.001 ——
0.005 |
0.01 -x--
0.05 s

0.52 : : : i
0 100 200 300 400 500

generation

Figure 22: Average best-so-far curves for GA
population size 80

16

GA N=100 npop=60 K=0

0.68

0.66

0.64

fitness

0.6

0.58

0.56 [

0.54

0.001 ——
0.005 -—-—
0.01 *
. . . 0,05 —=
0 100 200 300 400 500
generation

Figure 23: Average best-so-far curves for GA Figure 26:
population

for population size 60

0.68

0.66

0.64

0.62

0.6

fitness

0.56

0.54

0.52

GA N=100 npop=40 K=0

0.001 ——
0.005 —-x—-
0.01 -
. . . 0,05 —=
0 100 200 300 400 500
generation

fitness

0.54

fitness

0.54

GA-m N=100 npop=60 K=0

0.001 ——
0.005 -—-x—
0.01 *
. . . 0,05 —=
100 200 300 400 500
generation

Average best-so-far curves.GA-m
size 60

GA-m N=100 npop=40 K=0

0.05

100

200

generation

300

400

500

Figure 24: Average best-so-far curves for GA Figure 27: Average best-so-far curves for GA-
m for population size 40

for population size 40

0.68

0.66

0.64

fitness

0.6

0.58

0.56

0.54

GA-m N=100 npop=80 K=0

. 3
o 4
0.001 ——
0.005 -—-x—
0.01 *
. . . 0,05 —=
0 100 200 300 400 500
generation

fitness

GA N=100 npop=20 K=0

0.001 ——
0.005 -—-x—
0.01 -
. . 0,05 —=
200 300 400 500
generation

Figure 25: Average best-so-far curves. GA-m Figure 28: Average best-so-far curves for GA
for population size 20

population size 80

17

GA-m N=100 npop=20 K=0

0.68
0.66 *]
0.64]

o 062]

%] e

(o)

=

= 0.6 4
0.58]

0.001 ——
0.56 0.005 -~ -
0.01 -—x--
0.05 -
0.54 : : : i
0 100 200 300 400 500

generation

Figure 29: Average best-so-far curves for GA-
m for population size 20

Appendix 5
Source code for GA and problem generator used.

//**

//The data processing section is included, but is a bit of a ’rough’,
//Apologies.
//1 have also included the original Roulette wheel selection procedure

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <string.h>

//**x*xstructures for Look up tables for NK generatorkkkxx

typedef struct

{

int key;

double *value;
int ngen;

} HashVal;

typedef struct
{

HashVal **rows;
int nop;

int k;

} HashTab;

//***x*xxstructure for each individualskkkkkx

typedef struct
{

int len;

int *chrom;
double fit;
double expval;

}Ind;

19

//¥x*xxstructure for popkkkkkk

typedef struct
{
Ind **ind;
int npop;
double sumev;
} Pop;

#define NPOP 100

#define GEN 10

#define RNDSD 234

#define INTERVAL 1

#define NOINTERVAL (GEN/INTERVAL)

#define NPROB 2

#define NTOURS 4

//**xx*Hashtable and population initialisation and evaluation****x*

HashTab *initHashTab(int n, int k);
double getval(HashTab *ht,int pat,int gene);
int getpat(int *chrom, int n, int k, int gene);

Pop #*initpop(int len, int npop);

void randPop(Pop *popu);

double evalChrom(HashTab *ht, int *chrom, int n);
double evalPop(Pop *popu, HashTab *ht);

//**#xx*GA operators*x***

void iterateGA(HashTab *ht,int gen,int n,int npop,double* best, double pm,
double pc);

void tourselnPar(Pop *popu,int npar, Ind #**par);

void cross(Ind #parl, Ind #*par2, Ind #*xkidl, Ind **kid2, double pc);

void mut(Ind *kid,double pm);

//*x*xxoriginal roulette wheelkkxx**
//void selnPar(Pop *popu,int npar, Ind #**par);

void freeInd(Ind #*ind);
void freePop(Pop *popu);
void freeHashTab(HashTab *ht);

//*****Debugging******
void printPop(Pop *popu);

20

void printInd(Ind *ind) ;
void printHT(HashTab *ht) ;

int main (int argc, char x*argv)
{
int i,j,n,k,m;
double *xbest; //2d array for best of each gen for each prob
double bsof [NOINTERVAL+1]={0};
double pm,pc,tbsof=0.0;
char *filename;

time_t t;

HashTab *ht;

FILE *fp;

if (argc!=6)
{

printf('re-enter command line alga n k pm pc fname\n");
exit (EXIT_FAILURE);
}

n = atoi(argv[1]);
k = atoi(argv[2]);
pm = atof(argv[3]);
pc = atof(argv([4]);
filename = (argv[5]);

srand(time(&t));
srand48(time(&t));

best = calloc(NPROB, sizeof(double *));
for(i=0;i<NPROB;i++)
*(best+i) = calloc(GEN, sizeof(double));

for(i=0;i<NPROB;i++)
{
ht = initHashTab(n,k);
iterateGA(ht,GEN, n, NPOP, #*(best+i), pm, pc);
freeHashTab(ht) ;
}

//**xx*DATA PROCESSING - calculates mean bsof at INTERVAL across GEN
//samples at every INTERVAL, increments m up to GEN/INTERVAL

for(i=0;i<NPROB;i++)

21

tbsof=0.0;
m=0;
for(j=0; j<=GEN; j++)
{
if (x((*(best+i))+j)> tbsof)
tbsof = *((*(best+i))+]j);
if ((j%(INTERVAL))==0)

{
bsof [m]+=(tbsof/NPROB) ;
m++;
}
}
}
fp = fopen(filename, "w");
fprintf (fp,"# N=}d,K=)d,pm=4%f,pc=kf, popsize=Yd fpsel\n", n, k, pm, pc,NPOP);
for(i=0;i<=NOINTERVAL;i++)
{
fprintf (fp,"%d\t\thf\n",i*INTERVAL ,bsof [i]);
}
fclose(fp);
exit (EXIT_SUCCESS) ;
}

//**xx* Controls Generation loop ****x

//takes as arguments: pointer to hashtable, no of generations,
//N(chromosomelenght), population size, pointer to array to store ’best’
//individuals in and probabilities of crossover and mutaiton

void iterateGA(HashTab *ht,int gen,int n,int npop,double *best,double pm,double
pc) {

Pop *popu;

Ind #*par; //temp arrays for generation cycle

Ind **kid;

int i,j;

popu = initpop(n, npop);

randPop (popu) ;

par = calloc(npop,sizeof (Indx*));

kid = calloc(npop, sizeof(Ind*));
//GENERATION LOOP

22

for(i=0;i<gen;i++)
{
best[i] = evalPop(popu,ht);
tourselnPar(popu, npop, par);
for(j=0; j<npop;j+=2)
{
cross(*(par+j), *(par+j+1),kid+j, kid+j+1,pc);
mut (*(kid+j), pm);
mut (*(kid+j+1) ,pm);
}

for(j=0;j<npop;j++)
{
freeInd (* (popu->ind+j)); //releases o0ld population
*(popu->ind+j) = *(kid+j); //inserts new population

free(par);
free(kid);
freePop(popu) ;

//*x*%xx Selects 2 parents at time using tournament selection size NTOURS***x**
//takes pointer to the population structure, poulation size and pointer to
//pointer to ’parent’ array used in generational loop.

//places two individuals at a time into parent array

void tourselnPar(Pop *popu,int npar, Ind **par)
{

register unsigned int i, j, k;

unsigned int cpl, cp2, ptmp;

k = 0;

j = npar / 2;
while(j--)

{

cpl = rand() % popu->npop;

cp2 = rand() % popu->npop;

if (((*(popu->ind+cpl))->fit) < ((*(popu->ind+cp2))->fit))
{

ptmp = cpil;

23

cpl = cp2;
ptmp;

0O

g
N

1}

i = NTOURS - 2;

while(i--)

{

ptmp = rand() % popu->npop;

if (((*(popu->ind+ptmp))->fit) > ((*(popu->ind+cp2))->fit))
{

if (((*(popu->ind+ptmp))->fit) > ((*(popu->ind+cpl))->fit))
{

cp2 = cpl;

cpl = ptmp;

}

else

{

cp2 = ptmp;

}

}

}

*(par + (k++))= *(popu->ind + cpl); //places fittest two individuals
*(par + (k++)) = x(popu->ind + cp2); //in parent array.
}

}

//**xx*Roulettewheel selection procedure*x***

void selnPar(Pop *popu,int npar, Ind **par)
{
int i,j;
double pin;
double sum;
for(i=0;i<npar;i++)
{
sum = (*(popu->ind))->expval;
pin = drand48()*popu->sumev;
for(j=0; j<(popu->npop) ;j++)
if (sum<pin)
sum+=(* (popu->ind+j))->expval;
else
break;

24

if (j==popu->npop) //safeguard to avoid seg fault
i
*(par+i) = *(popu->ind+j);
}

//**x*xx Tests probability at each locus and mutates accordingly **k*x

void mut(Ind *kid,double pm)

{
int i;
for(i=0;i<kid->len;i++)
if (drand48()<pm)
(kid->chrom+i)=1-((kid->chrom+i));
}

//**xx* 2 point crossover *kk*x

//takes *p to two parents and *p to *p to two children and crossover prob
//allous possibility of one-point (if loci are the same or one is at an end)
//ensures crossover ALWAYS occurs if probability is exceeded (makes sure one is
//NOT an end)

//places ’children’ in kid array

void cross(Ind #parl, Ind #par2, Ind **kidl, Ind **kid2, double pc)
{

int i,locl,loc2,locx;

*kid1l = malloc(sizeof(Ind));

*kid2 = malloc(sizeof(Ind));

(*kid1)->chrom = calloc(parl->len,sizeof(int));
(*kid2)->chrom = calloc(par2->len,sizeof(int));
(*kid1)->len = pari->len;

(*kid2)->len = par2->len;

if (drand48()<pc)
{
dof{
locl = rand() % pari->len;
} while((locl == 0) || (locl == (pari->len-1)));

loc2 = rand() Yparil->len;

25

if(loci1>loc2)

{
locx=loci;
loci=loc2;
loc2=locx;

}

for(i=0;i<locl;i++) //crosses from start to locus 1
{
*((*kkid1)->chrom+i)
* ((*¥kid2)->chrom+i)
}

for(i=locl;i<=loc2;i++) //crosess middle section
{
*((*kkid1)->chrom+i)
*((*kid2)->chrom+i)
}

for(i=(loc2+1) ;i< (*kid1)->len;i++) //crosses locus 2 to end
{ //ensuring bit AT locus is swapped
((¥kid1)->chrom+i) = *(parl->chrom+i); //incase it is an end
((¥kid2)->chrom+i) = *(par2->chrom+i);
}

*(parl->chrom+i);
* (par2->chrom+i) ;

* (par2->chrom+i) ;
*(parl->chrom+i);

else
{
for(i=0;i<(*kid1)->len;i++)
{
((¥kid1)->chrom+i) = *(paril->chrom+i);
((¥kid2)->chrom+i) = *(par2->chrom+i) ;

}

//**xx*creates and initialises look up table with random values
//*xtakes N and K as arguments, returns a pointer to hashtable
//**creates table of size N by k~(2+1) (ngen by nop)
//*%£ills with uniformly distributed random numbers

HashTab *initHashTab(int n, int k)
{

HashTab *ht; //

HashVal *hv;

int i,j;

26

ht=malloc(sizeof (HashTab));

ht->k=k;

ht->nop=pow(2,k+1);
ht->rows=calloc(ht->nop,sizeof (HashVal *));

for (i=0;i<ht->nop;i++)

{
hv=malloc(sizeof (HashVal));
hv->key=i;

hv->ngen=n;
hv->value=calloc(hv->ngen,sizeof (double));
for(j=0;j<hv->ngen;j++)
*(hv->value+j)=drand48(); //fills array in hv
*(ht->rows+i)=hv; //puts *p to hv into rows

}

return(ht);

//**#xx*xInitialises population*****
//Takes N and population size as arguments, allocates memory for population
//returns pointer to population structure

Pop #*initpop(int len, int npop)

{
Ind *ind; //temp array for init stage
Pop *p_pop;
int i;
p_pop = malloc(sizeof (Pop));
p_pop->ind = calloc(npop,sizeof(Ind *));
P_pop->npop = npop;
for(i=0;i<npop;i++)
{
ind = malloc(sizeof(Ind));
ind->len = len;
ind->chrom = calloc(len,sizeof(int));
*(p_pop->ind+i) = ind;
}
return (p_pop);
}

27

//**#xx*xfills population wiht random Os and 1s****x*
void randPop(Pop *popu)

{

int i,j;

for (i=0;i<popu->npop;i++)
for(j=0;j<((*(popu->ind+i))=->len);j++)
* ((*(popu->ind+i))->chrom+j)=rand () %2;

//*#x*xxEvaluates Population (calls evalchrom() npop times)kk*xk*
//Takes pointer to population and hastable structures
//keeps track of and returns ’best’ individual

double evalPop(Pop *popu, HashTab *ht)

{
int i;
double best=0.0;
double fitsum=0.0;
for(i=0;i<(popu->npop) ;i++)
{
(*(popu->ind+i))->fit =
evalChrom(ht, (¥ (popu->ind+i))->chrom, (*(popu->ind+i))->len) ;
fitsum+=(*(popu->ind+i))->fit;
if (((*(popu->ind+i))->fit)>best)
best = (*(popu->ind+i))->fit;
}
//expected fitness values for use in Roulette Wheel selection
popu->sumev = (double)popu->npop;
fitsum /= (double)popu->npop;
for(i=0;i<(popu->npop);i++)
(*(popu->ind+i))->expval = ((*(popu->ind+i))->fit)/fitsum;
return(best);
}

//**x*¥*xEvaluates each chromosomes***x*x*

28

//Takes pointers to hashtable, specific chromosome and chromosome length
//returns fitness of chromosome (mean fitness contributoin of each locus)

double evalChrom(HashTab *ht, int *chrom, int n)
{

int pat,i;

double chromval=0.0;

for(i=0;i<n;i++)
{
pat=getpat(chrom,n,ht->k,i);
chromval+=getval (ht,pat,i);
}

return(chromval/n);

//*x*xx determines integer representation of pattern of interacting locik*kx
//takes specific chromosome, n, k, and specific locus
//returns integer rep. of ’pattern’ (used to reference correct row of hashtable)

int getpat(int *chrom, int n, int k, int gene)
{

int i,g,pat=0;

int f=pow(2,k);

g=gene-(k/2);

if (g<0) //enables wraparound for genes at locus[O]
g*=n;
for(i=0;i<(k+1);i++)
{
pat+=chrom[g] *f;
£/=2;
g++;
if(g>(n-1))
g=0; //ends wraparound
}

return(pat);

//****************retrieves relevant value from hashtabl ek kkkkk sk sk sk sk sk sk sk sk 5k 5k 5k 5k 5k 5k 5k 5k

//takes pointer to hashtable, and row and column values
//returns relevant fitness value

29

double getval(HashTab *ht,int pat,int gene)
{
return(*((*(ht->rows+pat))->value+gene));

}

[[#x*kxxkxxkxkkxk*releases individuals of old population each generation
// before ’children’ are inserted

void freeInd(Ind *ind)

{

free(ind->chrom) ;
free(ind);

//**xx*releases population memory*kk**

void freePop (Pop *popu)
{

int i;

for(i=0;i<popu->npop;i++)
{
freeInd (* (popu->ind+i));
}

free(popu->ind) ;

free(popu);

//*x*xReleases hashtable after each algorithm runkkxkx

void freeHashTab(HashTab *ht)
{
int i;
for(i=0;i<ht->nop;i++)

{
free((*(ht->rows+i))->value);
free((*(ht->rows+i)));

}

free(ht->rows);
free(ht);

30

///////////DEBUG FUNCTIONS//////11111117

//**xx*xprints population (0s and 1s)#**x***
void printPop(Pop *popu)
{

int i;

for (i=0;i<popu->npop;i++)
{

printf("ind %d: ",i);

printInd (*(popu->ind+i));
}

//**#xx*xprints fitness and expected value*x***

void printInd(Ind *ind)
{

int j;

printf ("fit:%f\t(4f) ", ind->fit, ind->expval);

for(j=0;j<ind->len;j++)
printf("}d",*(ind->chrom+j));

printf ("\n");

//**#xx*xprints hashtablex***x*

void printHT(HashTab *ht)
{

int i,j;

for(i=0;i<ht->nop;i++)

{

printf ("}d\t",1i);
for(j=0;j<((*(ht->rows+i))->ngen);j++)
printf("%5.2f ",*((*(ht->rows+i))->value+j));
printf ("\n");

}

31

32

