Chapter 4
Mimesis, Alife Art and Music

The fascination with creating ‘cybernatures’ evident in Alife Art is not just an artistic spin
on some hard science. Simon Penny (1995) has suggested that Alife research itself shares
an underlying motivation with many past art practices. He proffers that Alife research
can be seen as a modern-day technologically enabled expression of deep and ancient
drives to imitate nature and animal qualities. These same impulses, he suggests, drove
the Greek expression of human form in classical sculpture and the Georgian fascination
with automata, epitomised in curiosities such as the mechanical duck made by de Vau-
canson (1742) or Kaufmann’s mechanical trumpeter (1810) (Hafner and Kréatz (1978)). In
this respect, Penny compares core concerns of contemporary Alife researchers with those
of artists such as Cézanne, who at the turn of the century proffered: ‘Art is a harmony
parallel to nature’.

The current enthusiasm for Alife models in the generative and interactive arts can be
seen as an incarnation of the same compulsions. The last fifteen years has seen an abun-
dance of Alife-inspired art, not only on the web and at specialist events, but at major art
institutions around the world: Karl Sims” Genetic Images was shown at the Pompidou
centre, Paris (1993) and Sommerer and Mignonneau have recently had shows at both the
Victoria and Albert Museum London (Touch me, 2005), and the Van Gogh Museum, Am-
sterdam (Fierce Friends: Artists & Animals in the Industrial Age, 2005). As noted in the
last chapter, there has been some musical exploration of Alife techniques, but these have
seen nothing of this kind of success in the public domain, either on stage, on record, or
on air. This might be because the music world is not as easily ingratiated by progressive
art forms. But that seems unlikely. It might be because musicians aren’t as good at self
promotion, or simply that the ideas have taken longer to enter into the music scene. But
there is little evidence for this. Could it be due in part to the fact that the predominantly
visual nature of Alife research is more easily transformed into visual art ? Are these sorts
of processes somehow less amenable to representation in the sonic medium ? Does the
sense of artificial agency not carry in the sound world ? Or have we just not yet found
suitable models and mappings ?

This chapter considers the close relations between the visualisation techniques used
in Alife research and the forms presented as Alife art, and questions how strongly the ap-
pearance of agency in these systems relies on their visual presentation. Are the abstract
critters we see wandering about perceived as intentional just because of clever represen-
tational tricks? Or is there potential to use such systems to invite a comparable attribu-
tion of intentionality in the sound world? As a first step, all aesthetic considerations are
dropped and we take a step back and question whether those formal systems that have
conceptual and aesthetic appeal visually can create a similar affect in audio.
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This is an important question to raise, not only for the current project, but for the use
of extra-musical algorithms in general. As discussed in Chapter 3, many practitioners
adopt formal models on the basis on some perceived analogy between the structural
dynamics, or behaviour of the model and some musical morphology or phenomenon.
As Truax noted in his scathing comment on the use of non-linear systems, a programme
note explaining the rationale can capture the imagination of the audience for a little while,
but the conceptual interest may be rather short-lived if the musical effect is empty. The
implication is that whilst it might be a nice idea, in practice the particular algorithm
may not be any more effective musically than a random number generator. Well dressed
noise is a powerful tool, but in promoting a particular class of models as being useful
for various musical activities, it seems important to check that they can do more than a
noise function. The first step in this is to check that it is at least possible for the formal
properties of an exemplary model to be perceived from a sonification of its numerical
outputs.

Section 4.3 therefore presents the results of an experimental psychology study which
was run to investigate whether people could perceive the states of a one dimensional
(1D) binary CA from an audio representation. The results of this study lead to a deeper
consideration of mapping.

4.1 Seeing Artificial Life

The Alife roots of many generative and interactive artworks are vividly apparent. There
is a veritable dynasty of ecosystem-based visual installations in which abstract virtual
creatures scoot about a virtual space, feeding, mating, competing and morphogenically
diversifying whose ancestral origin in research such as Tom Ray’s Tierra (Ray (1991)) and
John Holland’s ECHO (Forrest and Jones (1994)) system is unmistakable. As mentioned
in Chapter 2, Richard Dawkins” BioMorph (Dawkins (1986)), which breeds insect-like
forms using evolutionary computation driven by aesthetic selection, was rapidly and
very directly applied to on-line and interactive art by William Latham and Karl Simms
in the form of Mutator, (Todd and Latham (1991)) and Genetic Images (Sims (1991)). Simi-
larly the graphical demonstration of the power of a handful of simple rules to coordinate
flocking behaviour by Craig Reynolds (1987) has spawned an entire genre of Swarm Art
within the Processing community. In each of these cases not only have conceptual and
formal models have been directly appropriated but also the method of visualisation.
The inherently visual basis of Alife as a research programme may be one reason for
the predominance of visual over sonic application in the art world. Conway’s Game of
Life (Gardner (1970)) was of fascination partly because it demonstrated the emergence
of complex behaviour from simple rules in silico. But if we accept the verity of claims
such as that since 1970, more computer time worldwide has been devoted to the Game
of Life than any other single activity (Chennamangalam (2003)) one might be tempted to
attribute at least some of its appeal to its graphical interface. Examination of streams of
zeros and ones would ultimately reveal the same information, but the fact that you can
literally see the little critters flashing and blinking and gliding across the screen, unde-
niably increases its appeal and accessibility, and even perhaps its power of persuassion.
Graphic visualisations can comprehension of complex models, but in some cases also
shorten the phenomenological distance between the behaviours of these formal systems
and the real-world phenomenon which they model. The same could be said for the ma-
jority of Alife simulations. Graphs of global fitness measures or line plots of ecosystem
diversity provide us with the information necessary to judge the success of a simulation,
but it is seeing the agent successfully avoid the falling object or freakish forms emerging

lhttp://www.processing.org



Chapter 4. Mimesis, Alife Art and Music 82

Figure 4.1: Visualisation of simulated foraging behaviour. Dale (2000).

in the silicon graphic soup which get us excited. Even before they have got into the hands
of artists then, the behaviour of a great many Alife simulations, or more accurately, the
visual representation of the behaviour of a great many Alife simulations, pull many of
the same strings in us that artists aim to tug.

The effect can be seen in static 2D plots as well as animated graphics. In 2000 Paul
Brown was artist in residence at the Centre for Computational Neuroscience and Robotics
at the University of Sussex, UK. At a research seminar given by then DPhil student Kyran
Dale, he saw a plot of the paths taken by an evolved animat navigating toward a food
source from eight different locations in a 2D plain. The animat was controlled by a con-
tinuous time recurrent neural network (CTRNN) which had been evolved for this nav-
igation task. The plot is shown in Figure 4.1 where the five faint circles represent land
marks, and the cross (through which all paths pass) symbolises the food source.

Prior to his visit to the CCNR, Paul had been a fine art tutor at various tertiary estab-
lishments for twenty years. His response to the visualisation of the CTRNN’s behaviour
was that any student producing a drawing similar to that shown in Figure 4.1 “would
have been assessed by their mentors as ‘showing talent” ” (Brown (2005) p.5). It is pre-
cisely the appearance of agency, the mark of motivation or goalseeking behaviour which
is evident in this drawing which appeals to the Alife artist, and indeed could be said to be
one of the aesthetics of Alife art —it is also of course the intention of the Alife researcher to
create systems which exhibit these life-like behaviours. It was experimenting with such
systems that inspired me to try and listen to them, and indeed Paul himself cites this
image as convincing him that it would be possible to create a drawing robot, a three year
AHRC funded research programme which he subsequently embarked upon.
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Figure 4.2: One of a set of 28 prints made with the Tissue software. Casey Reas 2002.

A similar, although much simpler, model has been used by artist Casey Reas. Tissue
is a body of work, based on the visualisation of the paths of thousands of Braitenberg
Vehicles. Braitenberg’s original vehicles (Braitenberg (1986)) were a thought experiment,
but can be conceived, and modelled, as simple robotic agents with light sensors, wheels
and variable speed motors. According to which way the light sensors are wired up to
the motors, the vehicles can be made to seek or avoid obstacles or light sources. Reas
uses thousands of similar agents, programming each one to leave a trace that shows the
paths it has taken as it follows, or avoids, other agents or obstacles. The work has been
exhibited both as an installation and as a set of twenty-eight prints made by Reas®. As
an installation piece, users can interact with a 2D graphical environment through which
the agents navigate. By positioning stimuli around the environment they can indirectly
affect the behaviour, and thus the traces left by the agents. Reas creates beautiful organic-
looking images using fine pencil-like lines and carefully selected colour schemes, how-
ever the main effect is not dissimilar to that experienced when playing with a khepsim
simulator. Certainly Reas’ prints and Dale’s visualisation bear more than a family resem-
blance. This is in no way meant to belittle the work of Reas, or any other visual Alife
artist, but reminds us of the close relations between Alife research and visual Alife art.

Whilst the Alife roots of these art works are vividly apparent, what is less obvious is
how easily these artificial agencies can survive outside of the visual worlds in which they
are presented. In visual Alife art, these virtual critters are often presented in a frame of
familiar environmental structures, a ground, a sky, a familiar spatiality. These provide a
context which encourages our zoomorphic attributions. As Whitelaw puts it:

2

thtp://www.reas.com/iperimage.php?section:works&work:tissue,p&id:O
3http://www.reas.com/texts/tissue.html
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“Our cultural familiarity with screen-based representation and the ubiquity
of this form (essentially a view of a landscape) leave us well equipped to take
up these cues, however scarce or marginal, and construct a stable analogy.
Once this artificial landscape is established, we read the represented events,
however crude, according to the same analogy. When two computer-graphic
blobs meet, and a third smaller blob appears, we understand that a birth has
occurred. When two forms meet and one vanishes, we see a predator and its
prey. - Whitelaw (2004), p.79

But these cues are not always present. And in nearly all cases there are definite be-
havioural resemblances in both their movement and their response to encounters with
other objects and agents.

4.2 Hearing Alife

Many people have of course explored the potential for Alife-type models in purely musi-
cal applications as mentioned in the first two chapters (Impett (2000), Bilotta and Pantano
(2002), Miranda (2000a), Blackwell (2003) etc.). However, very few of these have received
public attention of the level enjoyed by their compatriates in the visual domain. It is of
note that some of the highest calibre works have come from composers who have chosen
to transcribe the output of the system for human performers. Both Entre o Absurdo e o
Mist rio, and the second movement of Wee Batucada Scotica by Eduardo Miranda were
composed using material generated by a CA and performed by chamber orchestra and
string quartet respectively (Miranda (2000b)). Similarly Rodney Waschka’s (2001) opera
Sappho’s breath (see Section 3.1.2) was performed to large audiences by soprano Beth Grif-
fith*. Is part of the difficulty in capturing public interest associated with the digital deliv-
ery of the music rather than the material itself ?

Writing on the aesthetics of computer music, Guy Garnett (2001) suggests that the
two go hand-in hand. There are certain constraints on the compositional possibilities
associated with human instrumentalists which are removed when the performer is a ma-
chine. Most obvious is the lack of physical constraints: a machine can play faster, more
precisely, for longer etc., and is not constrained in pitch or amplitude of acoustic signal as
is an acoustic instrument. But as Garnett notes the constraints on “performability” associ-
ated with writing music for human instrumentalists impose not only physical restrictions,
but cognitive limits on the musical material as well. A player must be able to get not only
their hands (and maybe lungs) around compositional gestures and structures, but in or-
der to perform music, they arguably need to be able to get their mind around it. Escaping
the physical constraints of acoustic instruments is a major attraction for computer music
composers, and arguably essential to the current project, but Garnett suggests that these
restraints may well also serve to keep the material within a frame which potential lis-
teners may be able to digest. Remove these limitations and the possibility arises for the
composer to get so carried away with the formal elegance of a particular model that the
results are incomprehensible to the audience:

“The composer, without physical limitations of performance, can more easily
convince himself or herself that they have created something real and com-
prehensible, whereas what they have may be an unhearable ideal. It is rela-
tively easy to create algorithms that generate sounds whose qualities as music
are inscrutable, beyond the cognitive or perceptive abilities of listeners. And

4 Although it should also be noted that neither of these pieces were composed entirely using Alife meth-
ods, but generated fragments were recomposed by hand.
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with computer programs, it is not only possible but becomes a rather frequent
occurrence.” - Garnett (2001), p.26

It is easy to see how Alife music composers may suffer similar seductions. The key
aesthetic element here is perhaps ‘behaviour” (complex, adaptive, emergent, life-like etc.)
rather than precision, but it is only too easy to be enchanted by the conceptual charm of
a model of growth, evolution or self-organisation, and forget to question whether these
processes which are mathematically - and visually - compelling have any psychological
reality for listeners when the numerical outputs are mapped into sound.

Composers and researchers working in this area generally select models according
to a perceived analogy between the structural dynamics, or behaviour of the model and
some musical morphology or phenomenon. Tim Blackwell for example, uses swarm
models in his various interactive performance systems as he suggests that a similar pro-
cess of self organisation occurs within free improvisation (Blackwell (2004)). Bilotta and
Pantano (2002) choose CAs to generate music, suggesting that the CA’s “capacity to
mimic both evolution and growth in biological life seem to have some basic peculiarities
in common with natural human languages (and thus with music).” (Bilotta and Pantano
(2002), p.1)

The self-organising 'swarm’ is impellingly present in visual depictions of the algo-
rithm, and the emergence of complexities of CAs are readily observed in their graphical
representations. But can we necessarily manage to create equivalent phenomological re-
alites in the sound world ?

4.3 Testing the Auditory Perception of CA States

One could argue that it doesn’t matter. If it works, it works. If the outcomes are effective
musically then why does it matter how closely success is tied to formal aspects of the
algorithm? Well on the one hand if they aren’t effective then it might be useful to know
whether the delivery, implementation, or central concept was flawed. If this is carried
out in a research setting, there is perhaps some onus on the author to bolster their moti-
vational assumptions. More pragmatically, one of the central tenants of this thesis is that
the use of Alife and adaptive models offer an exciting new compendium of toys for the
digital composer. The development of these tools would benefit from some basic under-
standing of their potentials and effects. Assessment of their musical value is perhaps best
left to audience reaction, but if we want to explore these types of models as compositional
and performance tools, it seems sensible to stop and check that we can hear them.

This section describes a study which was run to ascertain whether people could iden-
tify distinct classes of CA rule sets from an auditory representation. This is not to suggest
that it is necessary, or even perhaps desirable, for the audience to be able to fully compre-
hend the state dynamics of a particular model. However, if it is not possible sonify such
systems such that their conceptually attractive properties can be appreciated, we might
as well just write our ideas down in Truax’s program note and spend our time finding
clever ways to use noise generators.

4.3.1 Auditory Perception and Auditory Display

Whilst there may not have been any work explicitly addressing the issue of how formal
structures are perceived in sound within the algorithmic composition literature, there
is extensive work of relevance being done within the emerging field of auditory display.
An established International Community of Auditory Display” hosts discussion of design
approaches and applications for auditory display in a range of disciplines. Much of this

Shttp://www.icad.org



Chapter 4. Mimesis, Alife Art and Music 86

research is in applied settings such as assistive technologies for the visually impaired
(Lunney and Morrison (1990), Kennel (1996)), mobile computing (Brewster (2002)) and
virtual reality systems. Although there has been little work done in the area Alife directly,
there is an increasing interest in the use of auditory display for scientific visualisation in
general (e.g. Hayward (1994), Dombois (2001)) and in medical settings in particular (Fitch
and Kramer (1994)) which is of relevance.

Existing research into auditory perception suggests that certain types of data may
be particularly amenable to aural comprehension. Speech-based evidence of selective-
attention (e.g. Handel (1989)) suggests that the auditory system may be capable of mon-
itoring data structures embedded in other more static signals which would be too noisy
to apprehend visually. A nice anecdotal example of this comes from the Voyager 2 space
mission. As the craft approached Saturn it started experiencing severe problems, the
cause of which could not be diagnosed from on-board graphical meters which depicted
pure noise. The data was sent back to earth and played back through a synthesiser, re-
vealing a machine gun effect at the critical period, which led to the realisation that the
craft was being bombarded with electromagnetically charged micrometeoroids (Kramer
(1994b)).

Other basic properties of acoustic perception suggest that sound may be a particu-
larly good medium for presenting and understanding the sorts of complex dynamic be-
haviours of interest to musicians. For example it has been suggested that the ear is partic-
ularly good at resolving multidimensional data in general (Bly (1982), Gaver (1989)) and
logarithmic or time-varying data in particular (Bly (1982)). The superior temporal reso-
lution of the acoustic system (e.g. Poppel (1994)), suggests that fast changing or transient
events that may be blurred or entirely missed visually can easily be heard. Sensitivity
to temporal characteristics also enables discrimination between periodic and aperiodic
events. We are able to detect salient patterns, even when subject to radical transforma-
tion. Again, this is supported by anecdotal evidence from the lab in which the quantum
whistle® was discovered. The oscillations predicted by quantum theory could not be
detected using a visual oscilloscope, however, transformation of the data into an acous-
tic signal created a faint whistle, providing the first experimental support for theoretical
predictions (Pereverez et al. (1997)).

Of key interest in the current context is the ease with which complex dynamics can
be appreciated in an audio signal. Consider for example that doctors” principle tool for
analysing ailments in the human respiratory, digestive or circulatory system is the stetho-
scope: medical students learn to listen to irregularities in blood pumping through veins,
oxygen osmosing through alveoli, or gases bubbling in the intestines. Experimental re-
sults show that in a simulated operation, medical students provided with eight dynamic
variables describing the health of a patient presented in audio, out-performed those given
visual, and even audio-visual displays (Fitch and Kramer (1994)). Results from other
medical and engineering investigations into auditory display support the idea that cy-
cles, rhythms, patterns and short events are particularly amenable to acoustic analysis,
McCabe and Rangwalla (1994). Whilst there has been no direct investigation into our
ability to perceive the state dynamics of complex systems, all these findings suggest that
our hearing system is well attuned to be able to do so.

Research in the field of auditory display also suggests that data describing natural
processes such as seismic readings can be more easily appreciated than other data such
as stock market figures, due to a shared physics:

6 A quantum whistle is a peculiar characteristic of supercold condensed fluids which vibrate when you try
to push them through a tiny hole. This has potential for developing incredibly sensitive rotation detectors
which could be used for example to measure rotational signals from earthquakes or very precise gyroscopes
for submarines.
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“A seismic recording will sound like a recording of natural environmental
sounds, because sounds transmitted through air (acoustic waves) have a simi-
lar physics to seismic vibrations transmitted through the earth (elastic waves).
The direct, physically consistent, playback can take advantage of human ex-
perience with natural sounds” - Hayward (1994), p.93

This might be seen as a benefit for those working with musical applications of biologically-

inspired models, on the premise that many of the forms and dynamics modelled share
certain characteristics with phenomenon in the natural world and so from an evolution-
ary perspective may be more comprehensible than other formal processes. At a basic
level of perceptual comprehension, it seems that there is no reason why we shouldn’t
be able to hear types of processes typical of Alife-like models. Infact it seems like our
hearing system might be better than our visual systems at taking them in.

4.3.2 The Effect of Musical Experience on Perceptual Accuity

Many of these research findings tarry with our experiences of listening to music (which
itself could be conceived as a complex dynamic system): we can pick out a rock bassline
plastered in heavily distorted guitar riffs; we can differentiate between, and simultane-
ously attend to, the vocal, keyboard and guitar parts; and we can recognise familiar tunes
even when key or tempo are dramatically altered. Musicians can do even better than this.
Music students learn to not only monitor and separate individual musical lines, but even
to dictate four or five part harmonies, transcribing the individual pitches and rhythms of
parts even for instruments of similar timbres. They can recognise not just familiar tunes,
but pick out novel motivic fragments even in complex orchestrations and when subject
to radical transformations in rhythm or pitch. These feats are impressive illustrations of
our ability to hone our perceptual accuity, but also represent quite considerable individ-
ual differences in listening ability which could be of relevance for artists (or scientists)
wishing to represent formal systems in sound. In particular, it suggests that it is highly
possible for a composer to appreciate the abstract processes he is sonifying as he sits for
hours on end listening to incremental changes during the development of his system,
but that by the time it gets a public hearing, the layers of complexity render the central
propositions utterly irredeemable to the first-time listener.

The significant effect of musical training on acoustic perception is illustrated by a
range of studies. Physiological and psychological differences between musicians and
non-musicians have been demonstrated (Petsche et al. (1988)), and differences in EEG
dimensionality between classical and popular music listeners point to the psychophysi-
ological nature of this difference (Birmbaumer et al. (1996)). Musical expertise has been
shown to affect simple perceptual, as well as conceptual judgments of pitch. For exam-
ple, in a controlled experiment, Neuhoff and Wayand (2002) tested participants of vary-
ing levels of musical experience and found that musicians reported significantly greater
pitch changes than non-musicians for the same interval. In addition, errors in judgements
of direction of frequency change were significantly greater for non-musicians (i.e. they
said note a2 was higher in pitch than note b when it was in fact lower). These findings have
obvious implications for the development and application of auditory displays, but may
be useful considerations for algorithmic composers, especially those sonifying complex
dynamic systems.

4.3.3 Design Rationale

The sorts of characteristics of relevance to musical Alife applications are things such as
general trends in the population dynamics of a GA or ecology model, the dynamic or-
ganisation of a swarm system, whether the outputs of a neural network have settled to a
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stable state or are still evolving: general classes of behaviour for complex dynamic sys-
tems. Pilot work investigating the comprehension of a homeostatic network (described
in Chapters 5 and 6) suggested that people could readily hear whether the continuous-
time outputs of a multi-node network had settled into a stable converged or oscillatory
state, or were oscillating wildly out of equilibrium. As noted above, it is well known that
the auditory system is capable of monitoring multi-dimensional data, and we are adept
at recognising periodic patterns, so this task is relatively easy. To create a perceptually
more challenging task which would allow examination of auditory recognition of state
dynamics, and also enable the investigation of differences according to musical experi-
ence, a 1D CA was chosen as the model to be sonified.

CAs are one of the most explored models in Alife music (Bilotta and Pantano (2002),
Miranda (2000a), Brown et al. (2000), Burraston et al. (2004)). They are discrete models
which are generally conceived (and visualised) as a regular grid of cells, which can each
take on one of a finite number of states. The model is described by a set of update rules
which operate in discrete time steps and determine the state of each cell at time 7+ 1
according to the state of its neighbourhood at time ¢. Rules and neighbourhoods are
usually fixed. One of the simplest CA models, which is used here, is a 1D model where
each cell takes on a binary value. The system is usually visualised by plotting the state of
each successive iteration as horizontal lines, one below the other (Figure 4.3).
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Figure 4.3: Examples of visual stimuli for chaotic (left) complex (middle) and ordered
(right) rule sets.

Some rules produce static, ordered patterns of cells, such as those shown in Figure
4.3 (right). Others produce chaotic distributions of cell states, much like the noise on
an untuned television set (Figure 4.3 (left)). Computationally the most interesting is the
third class of rules which produce complex patterns (Figure 4.3 (centre)). Areas of high
order suddenly give way to areas of chaos and then re-order. These patterns are easily
observed in graphical depictions, which provides a control with which to compare audi-
tory recognition. Because these are discrete time systems, and the recognition of rule class
requires consideration of the current state in the context of its history, it is likely that the
global state of a CA will be harder to hear than that of continuous time models. However
the pattern detecting powers of the auditory system suggest that it should be possible to
represent these patterns in sound such that these three classes can be differentiated.

4.3.4 Method

A categorisation task was designed in which participants had to classify the outputs of a
1D binary CA as one of three classes: complex, chaotic or ordered. This was done using
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graphic, audio and audio-visual displays and carried out by music and science students
of comparable ages.

Participants and apparatus

Twenty music students from Northbrook College Music Technology course and Twenty
non-music students from the Informatics department at the University of Sussex, UK
were each paid £5 to take part in the study. All reported normal or corrected to normal
vision and hearing. Participants were screened to ensure that music students all spent at
least 10 hours per week engaged in active listening (playing an instrument with others,
dj-ing or producing music) and had done so for at least three years. Non-music students
were screened to ensure they did not have similar experience. It was assumed that they
were all familiar with graphical displays.

The task required the classification of 1D binary CA into one of three qualitative states
(ordered, chaotic or complex). These are equivalent to the four classes described by Wol-
fram (1982) where classes one and two are conflated. Rules from each class were taken
from (Wuensche (1997) (K = 5)). Three blocks of twenty-one trials were presented, across
which mode was manipulated, creating 63 trials in all. Visual stimuli were presented
on a 15 inch LCD display. Auditory stimuli were presented via Sennheiser stereo head-
phones. The experiment was run on purpose-built software, using MIDI to trigger native
instruments FM7 virtual synth, (preset bank 1 ALL, no 23 'native percussion’).
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Figure 4.4: Rhythmic mapping: cell states are transformed to musical events: 1 = play, 0
= rest. Four lines are voiced simultaneously

Stimuli

CA Rules were taken from those described by Andrew Wuensche (1997) which are cat-
egorised according to the entropy variance of the rule look-up tables. They were imple-
mented on a grid 66 cells wide with wrap-around and initialised randomly with 20% set
to one. Prior to presentation, each rule was run until it achieved its characteristic state.

Visual stimuli were presented on computer monitors placed 50cm from participants.
CA states were represented graphically in a black and white grid with a grey background.
Example stimuli from each class are presented in Figure 4.3. Initially four lines were
presented, and then automatically updated at the same rate as the audio representation
progressed.

Auditory stimuli were created using a sonification scheme which employs two sets of
mappings. One transforms the familiar spatial patterns of the CA into temporal patterns,
creating distinct types of rhythms for each class. The other converts statistical properties
of the rule look up table into pitch values, creating harmonic progressions which vary
characteristically for each class.

The rhythmic mapping, which is shown in Figure 4.4, transforms spatial patterns into
temporal patterns by mapping cell state to note status: 1 = play, 0 = rest. The 1D array of
cell states is read left to right, producing 66 timesteps per iteration of CA rules. In order
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to preserve the context or history available in the visual display, four lines were voiced
simultaneously at different pitches. Note that although this mapping changes the tempo-
ral characteristics, producing a continuous sequential rhythmic development in contrast
to the discrete synchronous graphical update, the spatio-temporal mappings preserves
Gestalt properties that are thought to be key to pattern perception such a grouping by
proximity.

The harmonic mapping determines the pitch of the each note according to the frequency
distribution of the rule look-up table which is updated each iteration. At each time step,
the number of times each possible rule is used is recorded. The mean of this frequency
distribution is used to determine the pitch of the bass note. Any cells that are alive in
the current array are voiced at this bass pitch. Live cells from the previous three itera-
tions are voiced at successively higher pitches at intervals equal to the variance of the
frequency distribution. Because the statistical distributions vary qualitatively with each
rule type’, this mapping produces chords, and chord sequences that differ characteristi-
cally: ordered rules produced fixed progressions that are repeated, chaotic rules produce
close, dissonant chords that vary minimally and complex rules produce wider chords
with more significant changes (see Figure 4.5).
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Figure 4.5: Harmonic mapping for the CA.

’This same pattern underlies the discrimination by entropy variance used by Weunsche. This measure
was used here as for the current purposes it provided the same differentiation, but was less expensive com-
putationally
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Design

In order to familiarise participants with the task, each completed a practice phase before
undertaking the main task. In the practice phase, participants were required to categorise
CA states using an audio-visual display, and given feedback on their choice. They were
instructed to view sufficient examples until they felt ‘comfortable” with the task.

In the main task, all participants in both groups were subject to all three conditions
across which presentation mode was manipulated. Each classifed the same three sets
of twenty-one rules presented in three blocks according to presentation mode (audio,
visual, audio-visual). Condition order was counter balanced across participants, and
presentation order of rules was randomised. Classifications as well as response times
were recorded.

Procedure

Participants were first given written instructions and explainations of the task and then
presented with visual and audio examples of each of the three classes. In the practice
phase the auditory and visual representations were displayed simultaneously (equiva-
lent to the audio-visual condition). There were initially four lines of visual display which
updated in time with the auditory display. For the first six examples the class type was
displayed on the screen. Subsequently, participants practiced classification by clicking
one of three labelled buttons, and received on-screen feedback as to the correct response.

In the test phase, participants no longer received feedback, and were instructed to
attend each stimuli until they felt confident of their classification choice. Responses were
made via one of three labelled buttons, and the next stimuli was presented 75ms after the
‘next stimulus’ button was clicked. They were encouraged to have a short break between
conditions if necessary.

4.3.5 Results

Raw percentage accuracy scores were taken as the performance measure. These are sum-
marised in Figure 4.6.
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Figure 4.6: Mean scores and standard deviations for each group across all conditions
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Presentation Mode Effects In every condition, for both groups, percentage accuracy was
significantly above chance, suggesting that participants were able to make correct clas-
sifications based on the available information in all modalities. Although participants
apparently found the patterns hardest to discern when presented in audio, they were
still able to classify CA states correctly from an audio representation.

There was a significant main effect of presentation mode on accuracy scores for both
groups (non-musicians, df = 1.419, F = 66.915, p = 0.000; musicians, df = 1.269, F =
22.583, p = 0.000). Pairwise comparisons (using bonferoni adjustment) show that for
non-musicians, scores in the visual-only condition were significantly higher than those
of both other conditions (p < 0.001), and that audio-visual scores were greater than those
of the audio-only (p < 0.001). For musicians, scores in the audio-visual condition were
significantly greater than in both visual (p = 0.002) and audio (p = 0.000) conditions. Vi-
sual scores were also higher than audio (p = 0.006). This suggests that musical experience
does have some effect on preferred display modality: the non-musicians performed best
in the visual-only condition (suggesting that the audio actually put them off!), whilst the
musicians performed best in the audio-visual condition.

4.3.6 Musical Experience Effects

The performance of the two groups suggests that they were able to discriminate CA
classes from the auditory representation, but that experience and/or perceptual skills
may affect the clarity with which patterns were perceived. In this instance, the audio
mapping produced was not particularly straight forward, and it is of no surprise that
both groups found the audio displays hardest to classify. As noted above, the traditional
2D graphic representation of the CA is effective as the recent history of system can be
seen at a glance. The transient nature of sound means that the immediate history of the
CA system is not as comprehensible in audio as it is in a 2D graphical display.

Reinforcement and interference in multi-modal displays

Of greater interest is the differential performance in the audio-visual condition (the mu-
sicians performed best in this condition, but the non-musicians scores were better in the
absence of any audio cues). That the musicians performed best when presented with a
multimodal display fits with research suggesting that redundant, or complimentary rep-
resentations facilitate comprehension. Although this remains a contentious issue, bene-
tits of redundancy in multimodal displays, principally in the education literature, have
been made on the basis that multiple encoding, or cue-summation improves retention,
recall, and understanding of contents (Findahl (1981), Drew and Grimes (1987), Severin
(1967)).

Why then did the additional information available in the audio display decrease the
classification accuracy for non-musicians ? One possibility is that comprehension of the
audio display demanded recognition of harmonic and rhythmic patterns which were too
complex for them to perceive accurately. Recall that the mapping produced not only a
fairly straightforward rhythmic pattern, but also harmonic pattern that varied both in
terms of intervalic structure and harmonic progression. Given the findings cited in sec-
tion 4.3.2, it seems possible that the harmonic patterns in particular may not have been
perceptually clear to an untrained ear. Confusion over the audio clues may have meant
that the combined audio-visual display produced sets of contradictory, rather than com-
plementary cues. There is strong evidence for the interference effects which arise when
contradictory information is presented simultaneously to different senses. Perhaps most
famous is the McGurk effect (McGurk and MacDonald (1976)), where perception of a
speech phoneme is altered by dubbing it onto a video of a speaker saying a different
phoneme. More recently, conflicting audio-visual cues have been shown to create per-



Chapter 4. Mimesis, Alife Art and Music 93

ceptual bias (Sekuler et al. (1997)), illusions (Shams et al. (2000)) and even cross-modal
after effects (Kitagawa and Ichihara (2002)).

Further trials are needed to make conclusive remarks but these findings suggest that
it is possible to perceive high-order characteristics of complex systems when the system
outputs are represented only in sound. However, findings also highlight the importance
of considering musical experience when designing any mapping which aims to render
data listenable. For those interested in auditory display as a visualisation tool, the impact
could be enough to render the tool useless. In artistic application these results perhaps
serve to remind composers that the musical patterns and morphologies which they aim
to create and may be able to perceive, may not be so evident on first hearing or to an
untrained ear.

4.4 On Mapping and Model Selection

The mapping used undoubtedly had an effect on the ease with which both groups could
make a classification. The central importance of mapping design is well recognised
within the field of algorithmic composition, and is also a significant area of investiga-
tion within auditory display research.

For sonifications developed within the field of auditory display, the main focus is on
the development of intuitive and unambiguous mappings. In musical applications, we
may not want to be so literal, but research findings in this area raise some issues worthy
of consideration. Design of auditory displays for data analysis focuses on the psycholog-
ical meaningfulness of the resulting signal. Currently, most mappings reflect subjective
preference, at best evoking common metaphor - such as increases in frequency with tem-
perature - in an attempt to produce mappings that are compelling (Kramer et al. (1997)).
Such metaphors are limited however and the mapping procedure for most variables is
far from intuitive (Walker and Kramer (1996)). Differences in specific data-sound map-
pings have been shown to affect reaction time and accuracy in monitoring tasks (ibid).
However even for common physical dimensions, there seems to be little consensus over
preference for particular mappings or their direction (Walker et al. (2000)).

Perceptual Interactions Within Display Dimensions.

Even when intuitive mappings are developed, the limited number of orthogonal dimen-
sions in sound space potentially create perceptual interactions which can distort the way
relations within the data are perceived. Numerous studies have demonstrated that the
auditory dimensions of pitch, loudness and timbre interact perceptually (e.g. Melara and
Marks (1990)). Even within one dimension, there appear to be perceptual asymmetries
for rising and falling intensities of equal magnitude, e.g. subjects report larger absolute
changes in volume when it is getting louder than when it is getting quieter (Neuhoff
(1998)). Research has shown that these same interactions and asymmetries occur even
when mapped onto data dimensions (Neuhoff et al. (2000)). Values of stock prices and
trading volumes were mapped onto pitch and intensity of an audio signal, and partici-
pants were instructed to make judgments of relative changes in trading figures according
to perceived changes in the sounds. When both auditory dimensions changed in the same
direction, perceived variation in the target variable was reported to be greater than for
incongruent changes of the same magnitude.

Timbral parameters are similarly susceptible to interaction, such that linear changes
can have unpredictable, non-linear perceptual effects. For example, our perception of
the brightness of a sound is determined by several factors including the attack time, and
spectral evolution. This means that a bivariate display, in which one variable is mapped
to the position of the spectral peak and another to the attack time of a static harmonic
tone will not be heard as a simple 2D space, as many different combinations of these
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two variables can create a perceptually equivalent level of brightness. Indeed it has been
suggested that a true balanced multivariate parameter mapping may not be possible in
practice (Kramer (1994b)).

Although these interactions may cause problems if data is mapped to continuous
parameters, the use of discrete timbral variations can be effective. Using contrasting
acoustic textures, much like employing different colors in a graphical display, increases
the number of dimensions that can be represented by high level audio dimensions and if
carefully designed can prevent masking effects, allowing attention to be equally divided.

Preservation of key characteristics

Despite insights from auditory psychology studies, we are far from any comprehensive
‘theory” of mapping. Currently the community operates by rules of thumb such as “rele-
vant changes in the data should ensure a change in what is perceived. Changes in what
is perceived should signify meaningful changes in the data.” (Barrass and Kramer (1999),
p-25). Although this may sound like a truism, it serves as a useful reminder to any com-
posers using sonification methods to consider which dimension of sound can best carry
the structures they wish to present, or conversely, which types of systems produce dy-
namics most suited to the domain they are interested in structuring.

For example a more effective means of representing the evolution of the patterns in
the 1D CA used in the study above may be to map each element in the array to a pitch
value, and present each row synchronously at audio rate (i.e. greater than 20 Hz). Pat-
terns in the data would then be perceived as timbral, rather than rhythmic and melodic
variations. The periodic patterns arising from ordered rules, would produce a more har-
monic tone, chaotic patterns producing a more noise-like signal. Such a mapping would
preserve the inherent synchronicity of the system and go some way in overcoming the
lack of persistence of sound. Other researchers exploring musical application of CAs
similarly report that they are more successfully applied in the synthesis domain.

Perhaps the most published CA-based music and sound applications are those of Ed-
uardo Miranda. He used different 2D CAs to create both harmonic fragments (CAMus),
and as a granular synthesis engine (ChaosSynth) (e.g. Miranda (2000b)).

In CAMus, two different CA rule sets running on separate grids are used to define
the orchestration and placement of notes in pitch and time. One set of rules, Conway’s
Game of Life, consists of binary cells, which form characteristic discrete configurations.
For example blinking crosses, static boxes or the infamous glider, a set of five cells which
traverses the grid. In the other rule set, Demon cyclic space, cells can take one of seven
states. From initially random configurations the system settles to produce stable patch-
work patterns (shown in Figure 4.8).

The Game of life rules are used to determine a three note chord by transforming the
cartesian coordinates of any given live cell into successive intervals above a user defined
root. This is shown in Figure 4.7. In this example, the user has chosen the note G2 as the
root note and cell at location (19, 7) was alive, the other two notes are D4 (19 semitones
above G2) and A4 (the note 7 semitones above G2). The time intervals between these
notes are determined by the states of neighbouring cells. The three notes are then voiced
on (MIDI) instruments defined by the state of the corresponding cell in another 2D CA
described by the rule set demon cyclic space. If the user had defined an oboe to orange,
and the cell at position (19,7) on the demon cyclic space grid was orange, then the triple
G2, D4, A4 would be voiced as an oboe.

In chaosSynth a CA rule which mimics chemical oscillations is used to parameterise
a granular synthesis engine. These cyclic CAs evolve from a random state to produce
spatial oscillations, mimicking the pattern formation seen in some chemical reactions.
The granular engine consists of a bank of oscillators each of which are associated with
specific groups of cells. Each cell can takes a continuous value, which determines its
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Figure 4.7: Mappings used in CAMus. The cartesian coordinates of a live cell are mapped
to a triple (top). Each iteration of the rule set produces a number of such chords (bottom).

state as quiescent, depolarising or burned according to whether it is below, between or
above certain minimum or maximum thresholds. Cell values are mapped to frequencies,
and the amplitude and frequency of each oscillator is determined by the arithmetic mean
of the associated cell group. The duration of each sound is determined by the number of
configurations produced by the automata and the (hand set) grain length.

Comparing the results of the two systems, Miranda has concluded that CAs are more
effective as a tool for sound synthesis rather than operating at the higher note level (Mi-
randa (2000b)).

“In general, we found that Chaosynth produced more interesting results that
CAMus. We think that this might be due to the very nature of the phenomena
in question. The inner structures of sounds seem more susceptible to CA
modelling than large musical structures.” - Miranda (2000b), p.5

The dynamics of the chemical oscillator CA rule, as it evolves from a random state to
sustained oscillation, bear strong resemblance to the morphological evolution of many
acoustic instruments where partials converge from a random distribution to oscillatory
patterns (see Figure 4.9). The mappings used to parameterise the granular engine pre-
serve these characteristics, so the sounds produced similarly bear these morphological
features. However, Miranda himself writes that the mapping used in CAMus is arbi-
trary. Even if we saw some musical relevance to the blinking and gliding characters in
the Game of Life, the mapping does not preserve these dynamics in a way that the lis-
tener can comprehend. It is not necessarily true then that the inner structures of sounds
in general are more susceptible to CA modelling than larger musical structures. Just that
in ChaoSynth, the model used captured key characteristics of the musical phenomenon
it was applied to, and the mapping used preserved these characteristics.
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Figure 4.8: Evolution of CA used in Chaosynth: initial random distribution of cells (right)
evolves to an oscillatory pattern (left).

Figure 4.9: 3D wire sonogram showing evolution of spectra from initial white noise to
2nd, 3rd and 4th harmonic for a Mridangam (east Indian drum) stroke.

4.5 Summary

This chapter considered the degree to which the attributions of intentionality which Alife
art invites are bound up in the visual presentation. Just as the quality of algorithmic
music is determined in part by the mappings used, so successful Alife art may be due to
visual cunning on behalf of the artist. The relative success of visual work in this area, in
terms of high profile public appearances, suggests that there is some kind of inequality
between visual and musical applications of Alife techniques.

The results of the study presented in this chapter represent a first systematic step
into exploring the most basic source of this inequality: that Alife-type systems simply
can’t be heard. Of course the results of this study can’t be generalised. Just because
these people could identify these particular CAs states under this particular mapping,
it doesn’t mean that all aspects of Alife phenomenon can be perceived in audio. And
just because something can be recognised, it in no way guarantees its resplendence as a
musical device. However it seems important to perform such basic tests to ascertain at
least that the complex dynamics of some Alife systems can have any phenomenological
reality in sound.
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The results of this experiment led to a discussion on the importance of mapping and
model selection. There are various cues we can take from literature in auditory percep-
tion concerning perceptual interactions etc. Almost all discussion of algorithmic com-
position includes somewhere a line saying how mapping is the key. This is of course
important, but as these examples from Miranda were aimed to illustrate, before we think
about mapping, we need to think carefully about the peculiarities of the model we are
using and the musical effect we wish to make. Different models are suitable for different
jobs: some may not be suitable for anything, some may be suitable for lots of things, oth-
ers may need adjusting slightly. The next chapter presents a set of ‘studies’, exploring a
range of mappings for a variety of simple adaptive dynamical systems.



