
Chapter 5

Studies in Simple Adaptive Dynamical Systems

This chapter introduces some specific examples of simple adaptive dynamical systems.
The term ‘simple adaptive dynamical system’ is far from elegant but aims to mark out a
class of system that exhibit characteristics for generative and interactive activities. The
dynamical approach was introduced in Chapter 2 where it was suggested that it was
highly suited to subserving a rich continuous flow between human and machine com-
ponents of a performance network. Reviewing algorithmic composition in Chapter 3, it
was also suggested that formal dynamical systems could be successfully applied to create
a strong sense of linear impulse and, at least at the timbral level, a perceptually strong dy-
namic morphology, making them useful as compositional algorithms. Consideration of
the characteristics necessary to realise the richer conversational model of interaction also
ear-marked the importance of adaptation, in providing a coherent, internally generated
response. Following the examination of Alife installation art in Chapter 2, it was sug-
gested that the many layers of adaptation in the evolving ecosystems created a system
too complex and unresponsive for live music purposes, and it was proposed that the sim-
pler, single agent systems offered a more suitable model. The simple qualifier here then
aims to reign in the boundaries, these will become clearer with the illustrations presented
below.

• The audio examples discussed in the text can be found on the accompanying DVD,
tracks 1- 17.

• Max/MSP of objects for most of these models are also available on the DVD, along
with help files that illustrate the basic mappings described here.

5.0.1 Models
One of the propositions of this thesis is that adaptation is not only something to be con-
sidered in an interactive context, but that adaptive responses present a useful device in
generative composition practice. Generative art is typically discussed in terms of design-
ing a process. Processes like L-systems or CAs can be specified, and unfold to generate
a particular structure. At the other extreme, part of the fascination with evolutionary
processes, is that they can create outcomes which exceed the expectations of the artist,
surging off into the computational sublime. This project aims to carve a middleground,
retaining the coherent unity of the L-system as it develops through time, but introduc-
ing multiple sets of parallel processes which influence each others’ path. The focus of
interest lies between the generation of ‘structures’ (as in Xenakis’ interest in ‘out of time
structures’) and ‘composing interactions’ with a sonic by-product (as in Di Scipio’s AESI)
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and pushes toward composing interdependent, reactive structures ‘in time’, or more ap-
propriately, ‘behaviours’.

A handful of models have been selected, each of which are dynamical systems of
some form, and each of which exhibit some level of adaptation to environmental input
which is observable as a characteristic pattern of behavioural response. These have been
appropriated directly from, or inspired by, cybernetics, Alife and ecology. The systems
include models of homeostasis, entrainment, pattern propagation and population dis-
tributions. Similar techniques may have application for learning, searching, or problem
solving within engineering AI or AI music approaches. Here however their potential as
adaptive pattern generators is explored.

Models are considered individually in this chapter and a range of mappings are ex-
plored. Consideration is given to both specific compositional goals, and the ways in
which their adaptive characteristics can be employed in both compositional and perfor-
mance situations. In all instances, the aim was not to replicate any specific musical style
or idiom directly, but to attempt to create a sense of musical life and coherence by using
systems which can be seen to exhibit some degree of goal-directedness and/or adapta-
tion to their environment. This goal-directedness seems a first important step in creating
digital systems which exhibit some degree of independence, and ultimately a musical
‘personality’.

5.0.2 Mappings
In previous chapters it has been suggested that the responsive characteristics of such
models make them attractive as interactive mechanisms in live generative performance
and may also provide rich dynamics that are potentially capable of generative interesting
musical material. In other words that adaptation has potential as a compositional as well
as an interactive mechanism. In order to explore whether this is true, a number of dif-
ferent mappings were examined for each model. This project departs from the approach
taken by champions of algorithmic composition such as Xenakis or Roads.

In some of the most successful examples of algorithmic composition (e.g. Xenakis
(1971b), Roads (2001)) formal processes were developed for specific compositional situ-
ations. In these cases the algorithm and the mapping are tightly intertwined. We could
almost say that with stochastic systems as Xenakis’ GENDYN, what we hear is the process
itself: a direct sonification of the stochastic models. In a very different way Di Scipio’s
AESI also presents the process itself, although in this case it makes little sense to talk of a
process distinct from its sonification. In both cases, the process has been designed with a
very specific compositional aim and this aim defines the mapping.

The current project is motivated by a broader aesthetic aim: a desire to create a form of
behavioural generative system for performance and composition. The proposal is that the
dynamics of simple adaptive systems are capable of evoking a minimal sense of agency or
goal directedness that invites an attribution of intentionality, or personality. As discussed
in Chapter 4, certain algorithms may be more or less suited to structuring particular levels
of musical material. The aim of this chapter then is to explore some different ways of
mapping a range of models in order to ascertain primarily, whether any of the models
are effective at all.

In order to structure the explorations, mappings were explored at different levels of
complexity and at varying degrees of remove. These are summarised in Figure 5.1. In
the simplest case (Figure 5.1.a), the numerical outputs are directly sonified, for example
being used to specify the pitch of an oscillator. In this case the model is used directly to
generate musical material. This approach tarries with that of a data visualisation exercise
and allows immediate appreciation of the basic form of a model’s dynamics. Rather than
mapping every data point, certain characteristic features can be used to generate short
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events. Combinations of continuous and feature-based mappings can be also be used in
conjunction to create multiple mappings (Figure 5.1.b). This is an effective way of produc-
ing multiple parts that are closely related. These two approaches can also be applied to
sample-based sonification: features can be used to trigger short samples, or the full data
stream can be used to continuously manipulate some aspect of pre-specified sound ma-
terial – for example continuously altering the playback speed of a sample (Figure 5.1.c).
Alternatively the outputs can be used to control some other audio process acting on exist-
ing (or generated) audio, such as a filter or other effect (Figure 5.1.d).

one to one continuous mapping of output to sonic parameter

one to many continuous and discrete mapping of output to sonic parameters

features of output trigger pre-existing sonic material

output parameterises audio process acting on existing material

Figure 5.1: Outline of the mapping techniques explored. Outputs of the model are used
to: generate material directly creating either single lines (a), multiple different but re-
lated lines (b); trigger pre-existing sonic material (c); or to parameterise some other DSP
process (d).
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5.1 Adaptation and Homeostasis

In the 1950s, Cybernetician Ross Ashby built an electro-mechanical machine called the
homeostat. By all accounts the thing itself was an engaging machine, but its notoriety in
certain circles is due to the theoretical ideas that it incarnated. One of the conundrums
that preoccupied Ashby, was how a system (biological or mechanical) could be at once
state determined, and yet adapt to a changing environment and learn. Ashby (1952)
proposed that one of the key mechanisms underlying adaptive behaviour is homeostasis,
and like all good cyberneticians, provided a concrete, physical device to demonstrate his
theoretical notion of ultrastability.

Adaptive behaviour is a major research topic in contemporary cognitive science, and
indeed the importance of homeostatic adaptation is re-emerging in philosophical circles
as a key aspect for understanding of life, mind, autonomy etc. (e.g. Di Paolo (2005)).
Basic homeostatic adaptation is the starting point for the current exploration of adaptive
systems for interactive and generative music. Iconically and practically then, Ashby’s
homeostat provides inspiration for one of the central conceptual and algorithmic devices
used throughout the projects presented here. The term homeostasis was coined by Canon

Figure 5.2: Ashby’s electro-mechanical homeostat.

to describe the internal self-regulating mechanisms of biological organisms which main-
tain essential variables such as blood temperature, pressure and sugar levels in a dy-
namic balance. Cyberneticians such as Wiener (1948) and Rosenbleuth (1943) provided
us with a systemic understanding of the patterns of organisation subserving adaptation
and homeostasis- i.e. self-correcting negative feedback loops. The process is illustrated
by every day examples such as thermostatically controlled heating systems or lavatory
stopcocks and was expressed by Wiener (1948) in a characteristically wordy statement:

“When we desire a motion to follow a given pattern the difference between
this pattern and the actually performed motion is used as a new input to cause
the part regulated to move in such a way as to bring its motion closer to that
given by the pattern” - Wiener (1948), p.6

Ashby advanced the concept of a self-correcting feedback system in his theory of
self-regulating ultrastability. He defines an ultrastable systems as one that is able to re-
configure plastically in response to any of its essential variables going out of bounds. In
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a self-correcting system the relation between the input carrying the signal error and the
regulation device is fixed (the ballcock in a cistern is attached to a stiff rod connected se-
curely to the valve). An ultrastable system exhibits a higher order stability which allows
self-regulation of the regulatory mechanism itself (a cistern which could change the posi-
tion of the nut on its rod, or even invert the relationship between the angle of the ballcock
and the valve). Ashby illustrates the difference by inviting us to consider the mechanisms
controlling an autopilot. A standard autopilot might consist of a gyroscope connected to
the airelons on the aircraft wing: if the craft banks in one direction, the gyroscope mea-
surement induces the necessary change in the airelons to roll the craft back to horizontal.
If the connections between the gyroscope and airelon were reversed, the smallest bank in
either direction would be amplified: the autopilot would implement positive rather than
negative feedback and this would continue until the craft crashed.

The higher-order stability central to Ashby’s concept of ultrastability refers to a sys-
tem which would be able to adapt to, and compensate for, this reversal of connections.
In this case, once the roll reached a certain critical magnitude, the connections between
gyroscope and airelon would themselves invert until the roll was corrected and the air-
craft restabilised. In order to achieve this Ashby argued that a system necessarily requires
a mechanism consisting of a primary direct feedback between sensorimotor system and
the environment, and a secondary feedback, operating intermittently at a longer timescale,
between the essential variables and the sensorimotor system. It is this secondary feed-
back system which reconfigures the sensorimotor connections when the essential vari-
ables exceed their limits. Ashby’s mechanical homeostat was a physical proof of concept
for this theory of ultrastability.

Figure 5.3: Diagram of part of the homeostat circuitry from Ashby’s notebook.

The machine consisted of four units with a pivoted magnet on top of each. The angu-
lar deviation of each magnet’s position representing the essential variables which were
to be maintained within 45◦. Each unit sends a current proportional to the deviation of its
magnet from the centre (no current being sent when it is centred). This was achieved by
dropping a wire from each magnet into a trough of liquid with electrodes at each end, so
providing a potential gradient. The wire therefore picks up a graded potential depend-
ing upon the position of the magnet. The viscosity of the liquid in the troughs affects
the behaviour of the homeostat: highly viscous liquids creating a turgid, stable system,
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more fluid liquids producing wilder, more fluctuating behaviours which take longer, if
at all to stabilse. These electrical connections model the primary feedback, where any
one unit can be conceptualised (arbitrarily) as representing either the environment, or
the sensorimotor system of an agent in that environment.

The units were joined with connections between each magnet. The connections op-
erated via coils where the torque on each was proportional to the sum of the currents
in connected units. Each unit also had a recurrent connection. The current on each was
modified by passing it through a commutator and potentiometer which determined the
polarity and proportion of each input which is passed. These act as parameters to the sys-
tem, implementing a secondary feedback which was controlled by a uniselector on each
unit. The uniselector has twenty-five discrete states, each consisting of a three random
values derived from a standard statistical table. Each uniselector checks the value of the
outputs of its daughter unit, assigning new values to the commutator and potentiometer
if the magnet’s angle of deviation exceeds the critical value of 45◦. The new values affect
the movement of a unit’s magnet, and so change the potential that is passed to connected
magnets.

“When these parameters are given a definite set of values, the magnets show
some definite pattern of behaviour; for the parameters determine the field,
and thus the lines of behaviour. If the field is stable, the four magnets move
to the central position, where they actively resist any attempt to displace
them. If displaced, co-ordinated activity brings them back to the centre. Other
parameter-settings may, however, give instability; in which case, a ’runaway’
occurs and the magnets diverge from the central positions with increasing
velocity - till they hit the ends of the troughs” - Ashby (1952), pp.102-103

By a process of trial and error, the machine is able to maintain its essential variables
within specified limits. Ashby also demonstrated that the machine could exhibit basic re-
inforcement learning, adapting to alternate environments and presented it as an example
of basic self-organisation.

Wiener (1967) described the homeostat as “one of the greatest philosophical contribu-
tions of the present day” (p.54), but it was not without critics. Grey Walter (1953) dubbed
it the Machina Sopora, suggesting that if it were to be judged entirely by its behavior, the
naturalist would classify it as a plant (p.124). Another fair criticism which has been raised
is that the mechanism used to achieve homeostasis (i.e. random search) is incredibly in-
efficient and unpredictable. In Ashby’s electro-mechanical device, there are 254 (390,625)
different combinations of uniselector parameter values that a four unit homeostat can
randomly explore in order to find a combination that leads to stablility. This prompted
Singh’s (1966) critical description of the homeostat as a ‘permutational orgy’. As well
as taking an incalculable length of time to stabilise, the system is incapable of accumu-
lating adaptations, i.e. once it has achieved a certain behaviour, the stochastic nature of
adaptation makes it likely to be lost irretrievably as Ashby puts it:

“In general, if the Homeostat is given a problem A, then a problem B, and
then A again, it treats A as if it had never encountered A before; the activities
during the adaptation to B have totally destroyed the previous adaptation to
A.” Ashby (1952)

The ultimate goal of the device was to maintain consistency in the face of change,
which may not seem like a very interesting musical attribute. Its indeterminacies revoke
consideration of its employment as a robust learning device, particularly in a real-time
situation. But the basic adaptive and dynamical process by which it achieves homeostasis
is appealing.



Chapter 5. Studies in Simple Adaptive Dynamical Systems 104

The system illustrates the appearance of unpredictably complex behaviour arising
from the interactions of simple devices. The internal adjustments made provide a min-
imal form of goal directed behaviour: the homeostat behaves as though it were seeking
to keep its magnets in central positions. Despite its basic mechanical, deterministic sub-
strate, the system exhibits open ended and unpredictable, yet coherent behaviour.

“ . . . but what strikes me about them is their singular liveliness. I can’t actually
think of any prior example of a real machine that would randomly - open-
endedly as I would say - reconfigure itself in response to its inputs. When
I think of 1950s machines, I think of lathes, drilling machines and whatever
- deterministic devices that either respond predictably to commands or just
break down and never work again. It seems reasonable, then, to speak of the
homeostat as having a kind of agency - it did things in the world that sprang,
as it were, from inside itself, rather than having to be fully specified from
outside in advance.” - Pickering (2002)

From a practical creative perspective, the system offers an attractive balance of au-
tonomy and controllability. System behaviour arises from an internally controlled, open-
ended configuration, but is parameterised by the degree of viscosity. Although it is ‘do-
ing its own thing’, we can induce it to operate within a given field. The characteristically
different responses to different forms of input displayed also provide a form of global
control. Finally as will be discussed below, as a modular system, the size of the network
and degree of interconnectivity have significant impact on its behaviour, and can be en-
gineered for specific tasks.

5.1.1 A Model of the Homeostat
The key aspects of the machine were simulated in a neural-network style model. The
machine is conceived as a network of I units, each connected to J other units (shown
schematically in Figure 5.4) where the output of each unit is updated according to the
weighted sum of the output of all other nodes as shown in Equation 5.1 (these weights
modelling the potentiometers and commutators described by Ashby). In this simula-
tion if the output of any node exceeds a prespecified value, weights connecting units in
the network are re-randomised, simulating the role of the uniselectors in assigning the
system parameters. As in Ashby’s machine, the recurrent connection is held constant. In-
vestigation showed that the frequency of uniselector action (i.e. testing outputs) did not
have any effect on the major properties so it was held constant and outputs were checked
at every iteration. Viscosity was implemented by constraining the amount by which any
one unit could move between iterations.

Oi(t+1) =
j

∑
j=0

Ii j(t)×Wi j(t) where Ii j(t) =
j−1

∑
j=0

O j(t−1) +Oi(t−1) . (5.1)

Where Oi(t+1) is the Output of the ith unit at time t+1, Ii j(t)is the input to the ith unit from
the jth and Wi j(t) is the weight from unit j to unit i.

5.1.2 Homeostat Behaviour
This basic model is capable of replicating the principle characteristics of Ashby’s home-
ostat. Primarily, once stable it will actively resist small interferences (the primary feed-
back mechanism bringing all outputs back into line), large perturbations trigger weight
changes representing the secondary feedback mechanism which reconfigures the unise-
lector action in Ashby’s machine. This is shown in Figure 5.5. Once stable, the system
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Figure 5.4: Schematic of a fully connected four unit homeostat. Each unit is represented as
a square box, its output being the deviation of the small arrow from the centre. Weighted
connections between units are represented by the uni-directional arrows which link each
unit.

exhibits a minor transient response to perturbation below critical limits (marked a in Fig-
ure 5.5). At point A, the output of unit one was forced outside its critical limit. This causes
weights changes, and the system enters a different stable state. Note also that when sta-
ble the system sometimes converges to a point attractor (iterations 0 - 500 in Figure 5.5),
or oscillates in limit cycles, (as in iterations 500 - 1000 after critical perturbation) often
each node entering a cycle of different lengths. This can be used to generate basic poly-
rhythmic patterns.

In the original physical machine, the degree to which the system state was histori-
cally determined was controlled by the viscosity of the liquid in the troughs in which the
outputs trailed. This damping effect was modeled by restricting the variation in outputs
in any one unit from one iteration to the next. The effect of changing the value of this
variable proved similar to the assumed effect of varying the viscosity of a liquid: low val-
ues (representing high viscosity) result in turgid, stable behaviour; high values produce
more exploratory ‘run-away’ behaviour as each unit does not have time to achieve stable
parameter settings before other units transgress the critical limits. This is demonstrated
in Figure 5.6 (left) which shows stability as a function of viscosity. Here stability is mea-
sured as the time taken for all units to stabilise from an initially random weight selection.
In a later paper, Gardner and Ashby (1970) also discussed the effect of network size and
connectivity on the stability. Figure 5.6 (right) replicates his results, showing the inverse
relationship between stability and either size or connectivity of network.

5.1.3 Example Mappings from the Homeostat
Simple pitch control
The basic behaviour of the homeostat can be heard clearly if the outputs are mapped
directly into pitch deviations as in Figure 5.1.a.

• In Track 1 the outputs of a ten unit homeostat control the frequency of ten sine
wave oscillators, offset by a small amount to increase clarity. The initially unstable
network settles with each input entering a limit cycle of a different length. This
produces a minimal poly-rhythmic loop.
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Figure 5.5: Outputs of a four unit homeostat demonstrating stability to minor perturba-
tion (a) and re-stability after critical perturbation (A).
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Figure 5.6: Change in stability as a function of number of units and 1/viscosity (left) and
as a function of connectivity (right). Stability is taken as the point at which all units re-
main inside limits (and therefore weights remain constant), and measured as the number
of iterations taken to achieve this state, averaged over 200 runs.

• Track 2 illustrates a similar mapping made using MIDI. Here the outputs of a four
unit network are mapped to pitch bend, producing microtones of 1

32 th tone. The
effect of applying a small input to a stable network can be heard: at around 10”,
the regular pattern deviates for a few cycles and is then reinstated. This track also
illustrates the effect of employing multiple mappings. As well as mapping outputs
to a continuous pitch variation, a ‘melody’ line is created by using the output of
each unit to specify the pitch of a percussion instrument. The timing for each unit
is determined by selecting random number N for each unit in the range (2,10) and
voicing its pitch every ni beats. This creates a strange harmonised melody line.
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This approach was used in the AdSyMII installation described in Chapter 6, and also
forms the basis of a track Sines which was commissioned by generative film makes Iain
Helliwell for the LUX Open 2002, a festival of experimental film at the Royal Art College.
Here the homeostat is used to simply control the pitch of a set of four sine oscillators,
giving an organic feel. This is given on Track 3.

Splicing and remixing audio samples
As well as determining low level musical attributes, the homeostat works well as a
method of re-mixing existing audio material. In this example, the output range of the
homeostat is scaled to the length of an audio track. The original piece is Planting trees,
creating beauty by Norweigan trumpeter Arve Henriksen, an excerpt of which is given on
Track 4. At each update, a short sample from the source material is triggered by each unit,
the position being determined according to the value of each output. Rather than each
output playing its selection on every beat, the sound is thinned out by specifying that
some outputs only play when negative, some positive. This creates changes in density
as well as changes in content. A similar mapping process was used in the Self-karaoke
system and is described in more detail in Chapter 8, Section 8.2.2.

• Track 5 gives an example. The network is initially stable, each unit in a fixed limit
cycle. This causes each to repeatedly play back the same few sections of the origi-
nal file. At 15” a large input is applied to unit one, triggering weight changes and
causing the network to rapidly settle into a fixed point attractor. The network is
perturbed again, once more settling to a limit cycle. Over the next minute, a se-
ries of small perturbations cause a sequence of deviations from a repetitive cycle
until around 1’15 the viscosity is turned right up. This causes all units to rest at a
similar value, all triggering the same quiet section of bowed metal. The network
is perturbed once more, and the viscosity turned down, making the system more
excitable, and causing it to take longer to stabilise. At 1’45 you can hear the units
converge, this time reiterating a vocal sample, until the network is perturbed a final
time just before the end. The homeostat is iterated at 160ms intervals giving the
rhythmic pulse which can be heard.

Spectral Filter Automation
Even when in ‘Machina Sopora’ mode when the homeostat settles quickly to a point
attractor its dynamic response can be put to good effect. Track 6 gives an example where
the outputs are used as an ‘automated effects’ device. Here the change in the outputs of
the four units are scaled, and used to control the amplitude of the first 30 bins of a spectral
filter, the remaining set at zero. The filter works by performing a Fast Fourier Transform
(FFT) on an incoming audio signal and splitting the signal into a number of bins. The
amplitude of each can be individually controlled1. In this example, the audio input is
Morton Feldman’s Piano Piece for Three Hands, which is provided dry in the example
along with the filtered output. Rather than applying an input by hand as in the case of
the examples above, the amplitude of each attack in the piano part is analysed and used
as the input to unit one of the homeostat.

• In track 6, the viscosity is set high so the system settles quickly whenever perturbed.
Each attack therefore triggers a very brief period of oscillation, heard here as spec-
tral fluctuations after each note which die out between chords as the homeostat
settles. Once settled, the entire spectrum of the filter is at zero, meaning that just
the dry signal is heard. Notice also that quieter notes are insufficient to trigger

1This is essentially a fine grained graphic equaliser like you might have on your stereo to allow you to
boost or cut bass, treble, mid etc.
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the homeostat: as there is no change, the amplitude of each filter bin remains at
zero here also, giving no wet signal. At around 1’10 the viscosity of the system is
increased, resulting in larger spectral fluctuations which continue between notes.
The increased activity of the homeostat means more bins have higher values at any
one time, also increasing the overall volume level.

Rhythmic generation
The incommensurate lengths of the cycles into which the outputs often settle can be used
to generate regular, if lopsided, rhythms.

• Tracks 7 and 8 give examples of a rhythm generator made for a live performance at
Wrong Music2, an organisation dedicated to experimental noise music. Here each
output of an eight unit homeostat is used to trigger a different drum sample. The
actual value of the output being used to determine the playback speed, giving rise
to the variation in pitch which can be heard. Throughout both tracks, the system
was repeatedly perturbed, producing both small variations from the principle beat,
and larger changes in texture. In track 8, the update time was also manipulated
creating gaps and dense sputters.

5.1.4 Summary of Homeostat Features
The homeostat exhibits a number of behaviours and features which make it attractive
as a generative system for music. It exhibits a range of dynamics and characteristics
which can be used to generate novel but arguably evocative material. As can be seen
from Figure 5.5, when it stabilises it either converges to a single point, or to limit cycles,
with each output often settling of a different length cycle. This in itself can be used to
create complex polyrhythms. As also shown in Figure 5.5 it exhibits different responses
to perturbation: small changes causing a temporary deviation from the current attractor,
which is usually returned to after brief deviation, large inputs triggering weight changes
which invariably lead to the system settling on a new attractor. The viscosity variable
also enables global control over the nature of its dynamics: high values creating turgid,
repetitive systems, and low values creating wild searching behaviour.

The exact output therefore can never be known, but the behavioural dynamics can be
controlled on a qualitative level. Weights on the recurrent connections have a strong ef-
fect on the nature of the system’s response to perturbation, and general behaviour. In this
implementation, these are set when a new instance of the object is made. Again, although
the effect of any one set of weights cannot be predicted, the idiosynchracies of any one
configuration can be learnt in a more performative way by playing with the system. As
these are randomised on initialisation, the random number generator seed can be saved
so that ‘favourite’ configurations can be returned to. Despite Grey Walter’s suggestion
that this machina sopora is closer to plant than animal life, these characteristics provide a
balance of autonomy and responsiveness which seems appropriate for the development
of interactive and generative music systems. This basic homeostat is explored within a
generative music system in Chapter 6, in an interactive installation in Chapter 7 and in a
performance system in Chapter 8.

5.2 Entrainment in Neural Oscillators

Since the early 1980s, neural networks have been used in algorithmic composition, but
invariably employed as pattern matching or learning mechanisms. Here a continuous
time model was developed and used for the generation of musical material.

2http://www.wrongmusic.co.uk/
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Figure 5.7: Schematic of a neural oscillator node. The oscillator equations simulate two
neurons in mutual inhibition as shown here. Black circles correspond to inhibitory con-
nections, open to excitatory. The mutual inhibition is through the γ[xi]+ connections
([x]+ = max(x,0)), and the βvi connections correspond to self-inhibition. The input g j
is weighted by a gain h j, and then split into positive and negative parts. The positive
part inhibits neuron 1, and the negative part neuron 2. The output of each neuron yi is
taken to be the positive part of the firing rate xi, and the output of the oscillator as a whole
is the difference of the two outputs.

5.2.1 A Neural Oscillator Model
Neural oscillators are continuous time, real valued neuron models, arranged in pairs such
that the output of one inhibits the activity of the other, creating an oscillatory output at
a fundamental frequency. If a periodic input signal is applied to the pair, it will entrain
the input frequency. When nodes are arranged such that the output of one node acts as
input for other nodes, the frequency of oscillation across the network will be identical,
although the phase and exact shape may vary. Using simple mappings into sound, this
produces musical material that shares a common pulse or metre, but varies rhythmically.
This property also means that the basic pulse can be set by an external (user controlled)
input signal.

Neural Oscillators have been used in robotics tasks that require rhythmic movement
such as sawing (Williamson (2002)), and drumming (Kotosaka and Schaal (2001)), and in
models of rhythmic entrainment (Thaut (2003)). Here, a small network of simple neural
oscillators was built, based on the model described by Matsuoko (1985).

The oscillator system consists of two simulated neurons arranged in mutual inhibi-
tion, as shown in Figure 5.7. The time evolution of the oscillator is given by equations
5.2 to 5.6, where [x]+ = max(x,0). The output of the oscillator is yout , β and γ are constants
(here set to 2.5). c is a constant that determines the amplitude of the oscillation and τ1 and
τ2 are the time constants that determine the natural frequency (in the absence of input),
and shape of the output signal. Inputs (g j) to the oscillator are weighted by gains h j.
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τ1ẋ1 = c− x1−βv1− γ[x2]+−
j

∑
j=0

h j[g j]+ (5.2)

τ2v̇1 = [x1]+− v1 (5.3)

τ1ẋ2 = c− x2−βv2− γ[x1]+−
j

∑
j=0

h j[g j]+ (5.4)

τ2v̇2 = [x2]+− v2 (5.5)

yout = [x1]+− [x2]+ (5.6)

5.2.2 Neural Oscillator Behaviour
If an oscillatory input is applied, the node will entrain the input frequency i.e. it will
produce an output of equal frequency, but not necessarily the same phase, as the input.
This can be shown to be true over a wide range of input amplitudes and frequencies (see
Appendix A, Figure A.1 for an illustration).

The fundamentally dynamic nature and specific behaviours associated with its en-
trainment properties make this model an attractive resource. The input driving signal
can be given either by an external source, or from another software system, making it a
useful component for the modular approach adopted here. Networks of oscillators ex-
hibit a range of musically-relevant behaviours which are parameterised by a handful of
variables. The sonic effects of changing these parameters is of course determined in part
by the mapping and is discussed below in a simple case. In general, the fundamental fre-
quency and form of the output can be controlled by the two time constants (τ1 and τ2). If
run at audio rate, this can be used to generate audio signals directly. Iterating the model
at slower speeds enables the generation of either melodic or rhythmic lines according
to mapping scheme adopted. The entrainment property means that networks of these
modules can create material of chosen degree of density, where each part bears a global
relation to the whole. This creates parallel streams of data which retain their individual
identity over time, but move in relation to each other.

5.2.3 Example Mappings from the Neural Oscillator
Pitch control
One of the simplest, and perhaps most effective, methods of sonifying this system is
to simply map the output value of each unit onto a pitch value. When the bias of each
oscillator node is between zero and one, the output will always be in the range (-1,1). This
means the output can be easily mapped onto pitches in a chosen audible range. Figure
5.8 shows an example where the pitch has been quantised to semitones. The scored notes
represent the waveform within the dotted box above.

The periodic oscillation of the node produces a basic arpeggiated effect. Under this
mapping, changing the constant c varies the amplitude, and so pitch range of the line.
Quantising the continuous output means that small changes in output, as well as fixed
values result in a constant pitch. In the example shown in Figure 5.8 these repeated values
were excluded, automatically introducing some rhythmic variation. The time constants
affect the fundamental frequency of oscillation as well as its form, so can be used to alter
the melodic contour of the output. Changing the absolute value of the weight between
nodes as well as its sign determines the extent and nature of the influence of each node
on connected nodes, changing the relations between parts.
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Figure 5.8: Mapping from a continuous output to quantised notes. The section of score
represents the graphed output within the box and above the horizontal line only. Notes are
only re-voiced if they have changed by more than a semi-tone across timesteps, creating
the spaces shown here as rests.

• Track 9 gives an example of the basic arpeggiated line generated as well as the
effect of inverting the weights between nodes. In the example here, the outputs
of two nodes with the same bias but slightly different time constants are played
on two pianos. Initially node two is played alone after five cycles (20”) the second
piano enters. The weights are negative, causing the outputs to be in opposite phase,
creating a sense of turn taking. The weights are then inverted at 55” causing both
parts to play in unison.

.
Applying an external input can have several musically useful effects. Primarily of

course, if above a certain amplitude, it will determine the overall frequency of the sys-
tem output. Continuous periodic input (such as a sinusoidal function) of low frequencies
clamps the outputs of strongly connected nodes during the positive or negative parts
(depending on the polarity of the weight). This causes the output to freeze at a particular
value, being ‘released’ when the amplitude of the input drops. Sonically this creates the
effect of a line pausing, or resting on a pitch, then ‘coming back to life’. Finally although
the external input entrains the overall frequency of output, characteristics of the funda-
mental oscillation are preserved. This produces an inner pattern which is modulated at
the period marked by the main input.

• Examples of these effects can be heard on track 10. Again there are two voices here,
a piano and a sustained synth sound. Initially the synth is clamped, repeating the
same note. Once it comes in it takes a simple descending four note motif, which
is modulated by the input frequency, altering the pitch of some of the notes in the
internal structure. Here the synth sound is triggered only at local minima rather
than continously, creating a bass line feel.

• Track 11 gives an example with four parts playing and demonstrates the effect of
altering the input amplitude and frequency. At the start, four nodes are connected
with different time constants and biases, giving each a characteristic shape. There is
no input signal, so the frequency is determined internally by the nodes. From 20” -
60” the amplitude of the input signal is gradually increased. This has a differential
effect on individual units depending upon how closely they are connected to it,
and how strong their weights are. At 1’10, the frequency of the input signal is
decreased, the longer period clamping the outputs. Here repeated notes are omitted
so this audibly this thins out the parts. Finally at 1’50, the input is removed and the
ensemble returns to its initial repetitive cycle.

This melodic mapping was used in the installation Organised Entry which is described in
Chapter 6.
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Rhythmic mappings
The network can also be used to generate rhythmic patterns by defining certain points in
each oscillation to trigger a percussive voice. If a number of nodes are arranged in series,
with an external input, the frequency of oscillation is constant, but the oscillations may
vary in shape or phase. This provides a means of generating layers of rhythmic patterns
with a constant metre, or pulse, but with a much greater freedom in the placement of
individual beats than is common in most computer music. These discrepancies in timings
can bring a human feel to the output, akin to expressive deviations from the beat. Equally
however, deviations can make the output simply sound ‘out of time’. In these examples,
standard GM percussion instruments are triggered at either local minima, local maxima
or at zero-crossings. An example is shown in Figure 5.9.

• A simple rhythmic example is given on track 12 with successive nodes voiced,
demonstrating the possibility for generating conventional rhythmic patterns.

-1

0

1

0

0

0

input

node 1

node 2

node 3

Figure 5.9: Outputs of three nodes in series (left) and detail, showing beats triggered
(right): sinusoidal input and node three are triggered at local maxima, node two at zero-
crossings (falling and rising) and node one at local minima.

• A more interesting example is given on track 13. There are four nodes in series,
weights between each node, and biases are held constant. The different rhythms
are produced by changing the time constants of individual nodes. A change is
made half way through to one of the connecting weights, demonstrating how the
basic beat is preserved, whilst varying the ornamentation and altering the stress.

5.2.4 Summary of Neural Oscillator Features
The basic oscillatory patterns of the nodes mimic the wave-like structures of many melodic
and phrasal structures in instrumental music. The continuous nature of the outputs pro-
vides scope for mapping to a range of musical domains. Control of individual parts is
made possible by altering the gains and time constants, creating variations across com-
ponents in a network operating at a unified frequency. Altering the weights between
the nodes obviously also gives control over the relationship between constituent parts.
The same mechanism could be applied in interactive system with a performer - positive
weights on the input causing the system to spring into life when the performer plays, neg-
ative weights causing their playing to inhibit the system which would only play when
they are silent. In artificial neural networks, these weights model basic mechanisms of
inhibition and excitation which are fundamental to neuronal communication. Musically
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this process can be used to mimic basic modes of interaction between musical parts or
players i.e. unison or contrary motion

In the examples above, the entrainment property of the neural oscillator is utilised
to provide a metrical unity across each rhythmic part. This property also provides an
implicit beat detection mechanism that can be used to set the network outputs to a user-
defined pulse. A beat interval supplied via a MIDI (or ASCII) keyboard, or analysis of
audio signal can be used to set the frequency of the input signal, to which the rest of the
network entrains. For certain settings, changes in the input frequency change the shape
of the output signal. The result is a system that can keep time with a human player, but
will produce novel, unpredictable rhythmic variation.

This simple network, even with hand set parameters can be used to generate intru-
igingly musical outputs, with connected nodes creating a sense of ensemble. One of the
immediate draws backs of this implementation is the incessant nature of the output. The
melodic mapping described above was used for the installation Organised Entry, pre-
sented in Chapter 6, but combined with another system which acted as a mixer, control-
ling the entries of individual units in the network.

5.3 Pattern Propagation in Cellular Automata

Figure 5.10: Graphical representation of 1D CAs: chaotic (left), complex (middle) and
ordered (right).

Cellular automata are amongst the most used Alife system, their pattern propagation
properties being an attractive means of generating low level structures. As described
elsewhere, they have been used to specify pitch information, as well as to control signal-
level parameters for sound synthesis. A basic description of CA is given in Chapter 3,
Section 3.1.2. In the current project, the different forms of patterns generated by CAs
have been used to generate different rhythmic textures. The main mapping employed is
that described in Chapter 4, Section 4.3.4 which creates pitched rhythmic patterns from
their output. Further examples are given on tracks 14, 15 and 16 which correspond to the
graphical representations of the rules (chaotic, complex and ordered) shown in Figure
5.10.
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• Track 14 gives an example of the chaotic rule set shown in Figure 5.10 (left). The ran-
dom distribution of black and white cells creates an almost continuous spattering
rhythmic pattern. Recall that the mean and variance of the frequency distribution
of the look up table are used to determine the root pitch, and the size of the inter-
vals of the triad above this pitch respectively. In chaotic rules, each configuration is
equally likely, meaning that the frequency distribution of the look up table is flat.
This creates small intervals both between iterations and a low variance across each
iteration. This is heard as sets of close chords which vary minimally

• Track 15 gives an example of the complex rule set shown Figure 5.10 (middle). Here
the localised patterns evident in Figure 5.10 can be heard as broken blocks of regular
pulses. The mixture of local areas of order and higher level more complex forms
mean that the same rules are used repeatedly for a period, then change. This means
that the frequency distribution of the use of rules is skewed in any one iteration,
and varies over iterations. These high variances result in the wider chords which
can be heard, as well as the larger changes in root note which signifies the start of
each line.

• Track 16 gives an example of the ordered rule set shown Figure 5.10 (right). The
mapping employed creates short rising phrases from the diagonal stripes with a
regular rhythm. As an ordered rule set, the same individual rules are used over
and over again, preserving the same set of pitches. Here only two different rules
are used on alternate iterations, producing the alternating root note which can be
heard.

5.3.1 Summary of CA Features
The discrete patterns formed by 1D CAs provide a mechanism for generating strongly
rhythmic patterns. Under the mapping used here, although there is no metre imposed,
the patterns propagated produce distinct patterns of stress which punctuate the low level
events with structured accentuations. From a compositional perspective, the distinct rule
classes provide a means of varying the rhythmic complexity or accessibility. Rather than
mapping only the immediate state changes onto musical events, the use of changes in
statistical properties of the process can be used to relate different musical dimensions.

A CA was used in conjunction with a homeostatic network in AdSyMII described in
Chapter 6. CAs are usually seeded and left to run, but it is also possible to interfere with
the state flow by changing the state of cells in current influential neighbourhood. This
could for example cause an ordered rule to diverge, an interruption from which it may or
may not recover. A similar principle was explored in the individual based ecology model
described below.

5.4 Ecology Models

The models presented above predominantly have application in generating material.
Other models taken directly from, or inspired by population modelling have also been
explored as a means of controlling parameters in, or orchestrating, other systems. Two
different classes of model were examined, an individual-based model and a set of cou-
pled differential equations.

5.4.1 N-species Lotka-Volterra Model
The Lotka-Volterra model (Lotka (1925), Volterra (1926)) appears in all undergraduate
textbooks as the simplest ecology model that describes predator-prey relationships. It
consists of two coupled differential equations as shown in Equation 5.7
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dF
dt

= F(a−bS) and
dS
dt

= S(cF−d) (5.7)

Where F is the number of prey (rabbits, small fish, flies, etc.) and S is the number of
predators (foxes, sharks, spiders etc.), a = reproduction rate of prey, b = predation rate, c
= reproduction rate of predators (per prey eaten) and d = death rate of the predator.

For any positive values of a,b,c and d the system oscillates in a limit cycle. In ecologi-
cal terms this is incredibly over simplistic, as no ecology consists of only two species, but
is made up of numerous trophic levels connected in a complex food web. For the current
purposes the ecological validity can be ignored and the potential dynamics of the system
increased by creating a model for N species.

There are many ways of generalising the basic Lotka-Volterra equation. The one em-
ployed here was developed by Arneodo et al. (1980). In contrast to the simple limit cycle
exhibited by the two species Lotka-Volterra model, the n-species model used here ex-
hibits a broader range of dynamics for a larger number of species which is readily pa-
rameterised. The system of ordinary differential equations for n-species can be re-written
as:

dxi

dt
= xi

n

∑
j=1

Ai j(1− x j) (5.8)

where xi represents the ith species and Ai j represents the effect that species j has on
species i. The Ai j terms can then be represented as a matrix. For three species the val-
ues can be defined as:

A =




A11 A12 A13
A21 A22 A23
A31 A32 A33



 =




0.5 0.5 0.1

−0.5 −0.1 0.1
α 0.1 0.1



 (5.9)

where α parameterises the whole system.
As shown in Figure 5.11, the system exhibits a range of dynamics which are con-

trolled by the α-value. Low values (α ≤ 0.75) cause the system to converge on a fixed
point attractor, at higher values simple periodic behaviour emerges. Increasing the value
beyond this causes period doublings until at around α = 1.5, the system exhibits chaotic
dynamics.

.

• Track 17 provides a simple example where each of the three outputs are mapped
to the playback speed of three different versions of the same sample. The record-
ings are of Inuit caribou ladies babbling. At an initial α value of 0.75 the system is
converged on a point attractor, and each sample plays back at normal speed. As α
is increased to 1.2 you can hear the simple periodic behaviour emerge as uniform
oscillations in the playback speed; the period doubling evoked at α = 1.4 gives a
double loop, and at α = 1.5 the chaotic dynamics create chaotic pitch changes.

In itself the behavioural repertoire of the GLV model is perhaps a little limited, but
mechanisms like this are a useful addition to the compendium of objects. This model was
used as a mixing device in the Organised Entry installation described in Chapter 6.
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Figure 5.11: Period doublings in a three-species Lotka-Volterra system: phase space on
the left and xi on the right.
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5.4.2 A Simple Agent-based Model of Spectral-temporal Organisation
Evolutionary agent-based models are often used in Alife art and music as a means of
generating diversity, and exploring more open ended behaviours. This simple model
serves to illustrate how systems can be contrived to fulfil specific methods of control
and organisation. Specifically, the model aims to provide a mechanism for distributing
spectral and temporal features of events into unique niches. In contrast to the traditional
application of GAs as a means of achieving a single honed individual, this model aims to
achieve specific properties at the population level.

Within music, whether a symphony score, R and B track or improvisation group, the
function, value and significance of each part or player only makes sense relative to every
other voice. A central aspect of composition is in balancing the various lines such that
they each occupy their own unique space. Many composers, particularly of the acous-
matic tradition, draw inspiration from the organisation of sound in the natural world.
Bio-acoustic studies of natural habitats suggest that each organism occupies its own sonic
niche both in frequency/ spectral domain and in time. Results from studies performed in
Sequoia national park (Krause (1993)) support this hypothesis 3. If one creature stops vo-
calising, another joins the chorus, keeping the bio-spectrum intact. This idea is supported
by reports that point to the disruptive effect of human industrial noise on populations of
local wildlife. For example the population decline of birds living in areas of motorway
development has been attributed to the noise of the traffic preventing communication
and therefore mating (Barot (1999)).

Drawing from these observations a simple model was implemented to investigate
whether a self-organising mechanism, based on the premise that sound objects could
only persist if they occupied a unique spectral/temporal niche, could be used to organise
a randomised set of pitch-time values into unique and stable spectro-temporal niches.

The Model
The model is a simplified version of those used in individual-based ecology models (e.g.
Epstein (1996), Forrest and Jones (1994)). The system consists of a population of agents
which are defined by their pitch (P) and vocalisation time (V T ) values. Based on the
premise that individuals in any one species can only reproduce if they can hear each
others’ mating calls, reproduction can only occur between individuals of the same pitch
if they share the same V T value AND no other individuals of any other species hold this
value.

A population of agents is initialised with pitch and V T values selected from a uniform
random distribution over the intervals [1,10] and [1,100] respectively, and an energy level.
There are currently no spatial dimensions, and no resources. Time is discrete, and each
iteration consists of N timeslots, during which individuals vocalise. At each timeslot tn
any agent with vt value n, produces note p. If that timeslot is uniquely occupied by agents
with the same pitch value, reproduction occurs. Half the number of agents with coinci-
dental values are produced. Offspring inherit the parental P value which remains fixed.
V T values are inherited and mutated, using creep mutation with wrap around, with a
probability of 0.1. Energy levels are reduced for all agents on every iteration according
to whether or not they reproduced: taxes for those that did not reproduce are twice those
that did. When energy levels reach zero, the agent dies.

This mechanism alone was sufficient to produce populations which inhabited unique
pitch-time spaces, but in the absence of any external resources, additional factors were
required to curb the population and introduce novelty. A global population maximum

3The team suggest that the biophonies of natural habitats can be used as a measure of the health, or
stability of an environment: the more clearly demarcated each species is in spectro-temporal map, the more
stable the system.
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was set. When this is reached, no reproduction can occur until some agents die out. This
produces periods of stasis. A maximum is also set for each pitch class. When this is
reached, the number of agents of that pitch is reduced to X% of the remaining population
by randomly culling individuals.

In the absence of any external resources, or reproductive mutation of pitch values, the
system is extremely sensitive to the initial distribution in terms of the number of agents
that can reproduce. Once a pitch class dies out, there is no possibility for it to re-enter
the population. An extreme example, with only one pitch class is shown in Figure 5.12.
Drawing from the observation that in natural acoustic ecologies, when one spectral niche
is freed, another organism adapts its call to fill the gap, here when the number of pitch
classes (species) drops below a certain threshold, pitch values of the remaining members
of the population are mutated with a low probability at each iteration for the remainder
of their lives, introducing life-time variability in pitch.
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Figure 5.12: Figures showing distribution of agents in each pitch class (left) and across
time slots (right) for system with no lifetime pitch variation.

The system described above is capable of organising an initial random population
into subgroups that occupy unique areas of pitch-time space. Figure 5.13 shows the initial
and final distributions of a population in pitch-time space in a typical run. Figure 5.14
shows the movement of the population over 200 iterations in pitch (left) and time (right).
Even in this simple model, it seems that the reproduction criterion (in conjunction with
the restraint thresholds) is sufficient to produce populations that are stable - in terms of
neither dying out nor overcrowding - yet dynamic in producing movement of sub-groups
through pitch-time space.

The model also enables external manipulation of the population dynamics. In Figure
5.15, four agents of pitch class five, onset time 80 were introduced are iteration 250. The
system was started from the same initial seed as that shown in Figure 5.14, demonstrating
the potential for a user to change the course of the evolution of the system.

Summary
The model presented here is extremely simple, and in its current form, the sounds pro-
duced are far from interesting musically. However, it suggests that population distribu-
tions can be controlled according to simple reproduction restrictions. The reproductive
success of each agent is a function of the global environment, which comprises the be-
haviour of every other agent. This produces a unity between musical output (which is
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Figure 5.13: Figures showing initial distribution of agents in pitch-time space (left) and
final distribution (right).
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Figure 5.14: Figures showing distribution of agents in each pitch class (left) and across
time slots (right) for system with lifetime pitch variation.

the collective behaviors of all elements), and system state. The evaluation of all parts is
inherently a dynamic function. This possibility for establishing a coherence across a pop-
ulation offers an interesting approach to generative music systems that contrasts with
existing evolutionary approaches where the focus is on getting a small subpopulation to
achieve a certain criterion, or the pairwise testing of coevolutionary models.

5.5 Implementation

All these models were first developed in C++, and their basic behaviours examined.
Where appropriate their response was compared with previous implementations. The
homeostat, neural oscillator and GLV equation were then developed as Max/MSP exter-
nals so that they could be used within this environment. This makes the exploration of
different mappings very swift compared to coding the equivalent DSP or MIDI mappings
from scratch. The CA and agent-based model were developed as stand-alone Windows
applications.
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Figure 5.15: Figures showing distribution of agents in each pitch slot (left) and across
time slots (right) for system with lifetime pitch variation. At iteration 250, four agents of
pitch class five, onset time 80 were introduced

5.6 Discussion

Although very simple, these studies demonstrate the compositional potential of simple
adaptive systems in terms of both the sonic effect of their dynamics under different types
of mappings, and the practical impact of adopting algorithms that we can only influence
rather than directly control.

The homeostat and neural oscillator models in particular both generate a set of evoca-
tive behaviours. The interdependencies between the outputs of separate nodes in the
networks arguably creates a sense of dynamic cohesion under continuous and multiple
mappings in which each part is audibly related and influence is decentralised. Under
quantised, rhythmic mappings textures are created that have a strong sense of pulse in
the absence of any rigid metrical constraints.

Both systems are parameterised by a handful of variables which allow the user to
shape their behaviours whilst retaining the generative independence of the model. This
is useful in both compositional and live situations. In addition, both respond to exter-
nal influence which can be applied manually or algorithmically, evoking a contingency
which goes beyond button pressing. The response of the homeostat to perturbation pro-
vides an interesting form of control by which we can suggest that ‘something’ happens,
leaving the details of what that ‘something’ is to the algorithm. When mappings are
designed to take this into account, this can create some enthrallingly organic deviations
from, and recapitulations to, previous material.

This rhythmic interpretation of the CA takes advantage of its inherent pattern prop-
agation properties, and the use of multiple mappings here, as well as in track 2 of the
homeostat demonstrates how single models can be used to generate sets of independent
but related musical lines.

Many of the mappings used here act to quantise the continuous outputs of some of
the algorithms. For example in using the NOSC outputs to trigger MIDI notes, much in-
formation is being thrown away. In some respects, the true, continuous, dynamic nature
of the models is only preserved under mappings such as that used for the Lotka-Volterra
system. This is an example of the control mapping outlined in Figure 5.1.d – in this case
the algorithm’s three outputs were used to continuously alter the playback speed of three
versions of the same sample. These sorts of mappings are perhaps most typical in Sonic
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Arts domain where algorithmic composition is popular. The use of neural models to
generate arpeggiated forms typical of classical or early electronic music may seem to be
a mixing of worlds, but it is precisely this synthesis of difference that characterises the
cyber-nature aesthetic of Alife visual art, a synthesis which I am interested to evoke in
the sonic domain.

From a systemic perspective, perhaps the most interesting mappings are those that
go beyond a simple one-way number-to-note formula and feedback into the system. This
was demonstrated in a very simple case in Section 5.1.3. In this case the algorithm is con-
trolling a filter process operating on an existing sample, but the sample is itself affecting
the homeostat. This stitching-together of algorithm and implementation is a promising
direction for a more collaborative approach to interactive and generative composition
and performance and will be pursued a little further in Chapter 8.

The mappings used here have been developed for illustrative purposes. The main
thrust of this thesis is to lay the ground work for a more collaborative form of man-
machine musicianship, a collaboration in both systemic terms – such that human and
algorithm are mutually influential – and a collaboration in aesthetic terms – such that
the vagaries of algorithmic composition play out alongside the established acoustic tra-
ditions. The implementation of the algorithms in the form of software objects that do not
impose any restrictions on the way in which they are mapped is also quite intentional.
This is in line with the modular approach central to the musical communities that are
developing around software such as Max/MSP. In developing algorithms in this way,
it is hoped that other musicians can adopt these context-free algorithms for their own
compositional ends.


