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tributed as follows:
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Fence Study 4: The Larvae’s ear view are due to appear on the cd accompanying Evo-
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Summary

Situated at the intersection of interactive computer music and generative art, this thesis is
inspired by research in Artificial Life and Autonomous Robotics and applies some of the
principles and methods of these fields in a practical music context. As such the project
points toward a paradigm for computer music research and performance which comple-
ments current mainstream approaches and develops upon existing creative applications
of Artificial Life research.

Many artists have adopted engineering techniques from the field of Artificial Life
research as they seem to support a richer interactive experience with computers than is
often achieved in digital interactive art. Moreover, the low level aspects of life which
the research programme aims to model are often evident in these artistic appropriations
in the form of bizarre and abstract but curiously familiar digital forms that somehow,
despite their silicon make-up, appear to accord with biological convention.

The initial aesthetic motivation for this project was very personal and stemmed from
interests in adaptive systems and improvisation and a desire to unite the two. In sim-
ple terms, I wanted to invite these synthetic critters up on stage and play with them.
There has been some similar research in the musical domain, but this has focused on a
very small selection of specific models and techniques which have been predominantly
applied as compositional tools rather than for use in live generative music. This thesis
considers the advantages of the Alife approach for contemporary computer musicians
and offers specific examples of simple adaptive systems as components for both compo-
sitional and performance tools.

These models have been implemented in a range of generative and interactive works
which are described here. These include generative sound installations, interactive instal-
lations and a performance system for collaborative man-machine improvisation. Public
response at exhibitions and concerts suggests that the approach taken here holds much
promise.

Submitted for the degree of D. Phil.
University of Sussex

February, 2008
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Chapter 8.

e Audio examples described in Chapters 5, 6, 7 and 8 are provided on the following
tracks:

[5:1] hom-perturb

] hom-stabilise

5:3] hom-sines

5:4]  planting-trees-excerpt
5:5] hom-sam-remix

5:6] hom-filter

[5:7] hom-wrongbeatsl
[5:8] hom-wrongbeats2
[5:9] nosc-change-weights
[5:10] nosc-minima

[5:11] nosc-change-inputs
[5:12] nosc-perc-simple
[5:13] nosc-perc-delta-tau
[5:14] CA-chaotic
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[8:5]  Self-karaoke Pond-harp



Glossary: Abbreviations and resources

1D
2D
Al
ANN
CA
CTRNN
DSp
EC
GA
GM
MIDI
OsC
USB

Arduino

ChucK

Csound

Jitter

- One Dimensional

- Two Dimensional

- Artificial Intelligence

- Artificial Neural Network

- Cellular Automata

- Continuous Time Recurrent Neural Network
- Digital Signal Processing

- Evolutionary Computation

- Genetic Algorithm

- General MIDI

- Musical Instrument Digital Interface
- OpenSound Control (see below)

- Universal Serial Bus

is an open-source physical computing platform based on
a simple i/0 board, and a development environment for
writing Arduino software. The Arduino programming lan-
guage is an implementation of Wiring, itself built on Pro-
cessing.

http://www.arduino.cc/en/

is a concurrent, strongly-timed audio programming lan-
guage for real-time synthesis, composition, and perfor-
mance, which runs on Mac OS X, Linux, and Windows.
Code can be added, removed and modified on the fly, while
the program is running making it an ideal language for live
coding. It was originated by Perry Cook and Ge Wang of
Princeton University.
http://chuck.cs.princeton.edu/

is a text based music programming language written in the
C programming language. A typical Csound program will
include an orchestra file describing the nature of the instru-
ments and a score file describing the parameters of the ma-
terial (pitch, duration, amplitude etc). Csound then ren-
ders these files to produce an audio file or real-time audio
stream.

http://www.csounds.com/

extends the Max/MSP programming environment to sup-
port realtime manipulation of video, 3D graphics and other
data sets within a unified processing architecture.
http://www.cycling74.com

Contents
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Max/MSP

Processing

Pure Data (PPd)

OpenSound Control

SuperCollider

Wiring

Contents

is a graphical development environment for music and
multimedia. The program is highly modular and allows the
development of third-party externals as objects which can
be fully integrated with the native libraries. A typical Max
programme, called a ‘patch’ is based on multiple graphi-
cal objects connected into a data flow. Control rate MIDI
messages can be combined with a DSP network. Max was
originally developed by Miller Puckette and is now devel-
oped and maintained by Cycling’74.
http://www.cycling74.com

is an open source programming language and integrated
development environment (IDE) built for the electronic arts
and visual design communities. It builds on the graphi-
cal side of Java, simplifying some features and adding new
ones. It is developed by Casey Reas and Ben Fry
http://www.processing.org

is a graphical programming language developed by Miller
Puckette in the 1990s for the creation of interactive com-
puter music and multimedia works. Though Puckette is the
primary author of the software, Pd is an open source project
and has a large developer base working on new extensions
to the program. It is released under a license similar to the
BSD license.

http://puredata.info/

is a protocol for communication among computers, sound
synthesisers and other multi-media devices. It is optimised
for networking technology allowing very fast data sharing
between machines. It can transport over many protocols
but is commonly used with UDP or TCP/IP. It can be com-
pared to MIDI, but does not suffer the same time lags and
allows an open-ended url-style symbolic naming scheme.
http://www.cnmat .berkeley.edu/
OpenSoundControl/

is a real time audio synthesis programming language.
The Language combines the object oriented structure of
Smalltalk and features from functional programming lan-
guages with a C programming language family syntax.
Originating as proprietary software, it was released in 2002
by its author James McCartney under the free sofware GPL
license.

http://www.audiosynth.com/

is a programming environment and electronics i/0 board
for exploring the electronic arts, tangible media, teach-
ing and learning computer programming and prototyping
with electronics. It is an open project initiated by Hernando
Barragan and builds on Processing.
http://wiring.org.co/
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